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Preface 

This book consists of the review papers written by 
the specialists in high-temperature plasma physics working in the Kurchatov 
Atomic Energy Institute. These papers are mainly related to or stimulated by the 
studies of controlled thermonuclear synthesis. But, as always, the ideas and con
cepts developed in the field prove to be of a wider, more general, interest for the 
theory. 

In the last ten years plasma confinement in the tokamak systems has been ex
tensively studied. A kilovolt plasma temperature has been obtained in tokamaks 
with the plasma density about IOZ0 m-3 and a sufficiently good confinement time 
(up to 100 J'S). Extrapolation of the obtained regularities indicates a definite 
feasibility of the thermonuclear reactor based on tokamak. The focus of the rele
vant studies is increasingly shifted from the plasma physics proper to the 
engineering and technological problems of the reactor design. This does not 
mean that everything is now known about the physics of plasma in tokamaks. 
The problem of optimization of discharge in the reactor tokamak necessitates 
simulation of plasma processes which should be more accurate than under the 
experimental conditions. A primary problem is controlling of the stability and 
equilibrium of the tokamak plasma. 

Variation of the parameters of the equilibrium configuration (plasma pressure, 
current distribution, and external magnetic fields) results in variation of the 
shape of the cross section of the magnetic surfaces, which can lead to breakdown 
of thermal insulation. To predict such variation and control the plasma shape we 
have to perform numerical simulation of the equilibrium evolution process. The 
paper by Zakharov and Shafranov discusses a solution of this problem under the 
conditions of two-dimensional distribution of the configuration parameters. 

The paper by Pogutse and Yurchenko deals with some problems of the linear 
theory of hydromagnetic plasma stability, which were not quite clear until recent
ly and which are of a certain interest both theoretically and experimentally. The 
discussion is focussed on two most important hydromagnetic instabilities, name
ly, the kink instability and the flute instability (the ballooning modes). 

The theory of kink instability was developed primarily for the cylindrical 
plasma column as the toroidal effects were assumed to be inessential for it. The 
authors have shown for the first time that the inclusion of toroidality results in a 
splitting of the spectrum of oscillations of the plasma column, similar to the 
splitting of the electronic spectrum in crystals. This effect leads to closing of the 
stability "gaps" in which the modern tokamaks operate. The magnitude of 
splitting is proportional to the plasma pressure and the curvature of the torus so 
that the stability in tokamak deteriorates with increasing pressure (the ballooning 
effect). 

The above picture is typical of the lowest Oarge-scale) oscillation modes. The 
role of the current decreases with the mode number and the instability acquires a 
purely ballooning-type form when the source of generation of the oscillations is 
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the thermal energy of the plasma. In the recent years there has been a con
siderable advance in our understanding of the mechanism of development of the 
flute oscillations of plasma in the torus (the bollooning modes). For instance, it 
has been found that these oscillations are less stable than the perturbations that 
are constant along the field lines, which were studied earlier. The authors are the 
first to derive the analytical criterion of stability for the ballooning modes and to 
identify the physical mechanisms responsible for the higher instability of the 
plasma in torus. They used this criterion to calculate the thresholds for the 
plasma pressure in the tokamaks with the circular and D-shaped cross section of 
the plasma column. 

The paper also discussed the effect of dissipation on the kink and ballooning 
modes. The authors show that the peripheral plasma even of a relatively low 
conductivity has a stabilizing effect on the large-scale kink perturbations. When 
dissipation is taken into account, the ballooning oscillations are found to develop 
from the zero pressure gradient, that is, to have no threshold. Though the 
growth rate of these oscillations is considerably lower then the ideal growth rate, 
it can be suggested that their existence is a· fairly universal property of the 
toroidal plasma and they may be responsible for the so-called Alcator scaling. 

The relationship of the kink instability with the current disruptions in the 
discharge observed under certain conditions is discussed in the paper by 
Zakharov. In his unconventional approach to the analysis of the kink instabilities 
he considers the balance of the forces determining the geometry of the configura.
tion with the helical symmetry. This makes it possible to identify explicitly the 
cause of the kink instabilities related to the interaction between the plasma cur
rent and the longitudinal field, which under certain conditions results in increas
ing deformation of the plasma column. The approach based on the theory of 
kink instability makes it possible to obtain a new necessary criterion of stability 
of the kink modes, to describe the nonlinear dynamics of the kink instabilities 
and to evaluate the consequences of their development. In particular, the theory 
gives a sufficiently good explanation of the experimentally observed features of 
the disruptive instability .in tokamaks, such as the existence of large-scale and 
small-scale disruptions, the order of appearance of modes with different spatial 
structures, and the increase in the total plasma current during disruption. 

The paper by Petviashvili deals with a new rapidly developing field of the 
theory of nonlinear oscillations- the theory of solitary waves (solitons). It has 
been shown in recent years that depending on the relation between the signs of 
the dispersive and nonlinear terms in the wave equation either there can occur 
synchronization of the waves producing separate wave packets, that is, ..solitons, 
or the individual waves remain independent of each other and we are dealing 
with the wave turbulence. Thus, solitons are a fairly common phenomenon (they 
are close to such effects as self-focussing and collapse). The study of nonlinear 
waves in plasma can be especially gratifying since a large number of oscillation 
branches exist in plasma. 

The theory of one-dimensional solitons is sufficiently well developed. In his 
paper Petviashvili analyzes a much more complicated and interesting problem of 
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existence and stability of two- and three-dimensional solitons. He is the first to 
obtain solutions for a wide class of non-one-dimensional nonlinear wave equa
tions using both the numerical methods and the analytical methods. Petviashvili 
has analyzed the non-one-dimensional forms of the Korteweg-de Vries equation 
and the equation for the Langmuir .oscillations, the Langmuir solitons in the 
magnetic field and the solitons (vortexes) in non-one-dimensional plasma which 
are nonlinear solutions for the drift waves. He has used his results to explain the 
high-intensity scattering of electromagnetic waves from the ionosphere and the 
radiation of the plasma in a stellator. 

The paper "Observation of the Langmuir Solitons" by Nezlin reviews the 
Soviet experimental studies of the Langmuir solitons formed from the large-am
plitude plasma waves. These studies differ essentially in their approach from the 
experiments conducted by foreign (American and Japanese) scientists. The main 
differences are due to the fact that the Langmuir solitons are studied for the first 
time in the following new conditions: a) in a strong magnetic field, b) in a colli
sionless plasma, c) under the free-path conditions (which makes it possible to 
observe solitons in the absence of external wave pumping), d) in a plasma con
fined perpendicularly to the magnetic field. The pumping of the Langmuir waves 
is carried out with the external high-frequency fields and electron beams. 

These experiments have yielded the following main results. Solitons have been 
shown to be produced owing to the modulational instability of the large-ampli
tude Langmuir waves. This is the same instability which, for instance, determines 
the nonuniform spatial distribution of the wave energy over the sea surface or 
separation of a laser beam in a dispersive medium into a series of travelling 
"focuses", that is, solitons. The principal parameters of solitons have been 
studied. The soliton size proves to be the smaller the higher is the wave energy 
density (that is, the deeper is the plasma density "well"). The minimum observed 
size of solitons is 5 to 6 Debye radiuses and, apparently, corresponds to the 
boundary of strong absorption by the plasma particles (the Landau damping). 
The Langmuir solitons are shown to be sufficiently stable despite the fact that 
the plasma is radially limited and nonuniform, they propagate without spreading 
and exist for not less than tens of thousands of the Langmuir periods in the 
absence of external pumping. The mean free path of solitons is about lOZ em 
(about 3 x 103 Debye radiuses). The experimentally observed soliton properties 
on the whole are in good agreement with the theoretical predictions. 

These experimental results indicate that solitons are a characteristic state of 
strong Langmuir turbulence. They have a general physical interest and can be used 
in the studies of plasma heating with waves and beams of charged particles. 

The paper by Timofeev et al. deals with the measurement of the electron 
temperature in the open-ended traps. The paper reviews the results and analyzes 
the diagnostic techniques based on the measurement of the absorption coefficient 
for the probe beam of electromagnetic waves with the frequency close to the 
cyclotron frequency (or its harmonics). The resonance interaction between such 
oscillations is entirely due to the effects of thermal motion, and the absorption 
coefficient is a sharply varying function of the electron temperature. This techni
que makes possible in many cases to measure temperature on a smaller spatial 
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scale than other techniques. In particular, the electron temperature in the Ogra-3B 
trap was measured with this technique. The measurement of the absorption coeffi
cient makes it possible simultaneously to find the spatial distribution of the 
plasma density. The paper presents the derivation and detailed analysis of the ex
pressions for the absorption coefficients for the electromagnetic wave near the 
cyclotron frequency harmonics, discusses various modification of the technique 
and gives some results of its application in experiments. 

B. B. Kadomtsev 
February, 1981 



1. Evolution of Equilibrium 
of Toroidal Plasma 

L. E. Zokluzrov, OmtJ. Sc. (Php. tl1ld Mt~th.J, and 
Y. D. SluQranov, D. Sc. (Php. tl1ld Mt~th.J 

1.1 General Statement of the Problem 

Alongside with the conventional tokamaks with cir
cular cross section and constant major radius of the plasma torus, a well
established modem system is the tokamak with complex geometry of magnetic 
configuration that varies with time. This class of systems includes tokamaks with 
adiabatic compression, "Doublet" tokamak, finger-ring tokamaks, tokamaks 
with divertors and expanding magnetic diaphragm which programs the current 
density proflle at the initial stage of discharge, as well as tokamaks with high 
heating power and, respectively, extremely high pressure. 

In connection with development of the reactor tokamaks it is interesting to 
study some new possibilities for manipulating the toroidal plasma, such as mix
ing of several plasma columns into one for rapid plasma heating, exhaust of the 
plasma column from the working chamber into the evacuation chamber, and 
stripping of the external magnetic surfaces with the confining field varying with 
time. Especially many problems of this type are encountered in the reactor 
tokamaks operating in the cyclic regime. 

The primary problem for the system of these types is that of two-dimensional 
evolution of the equlibrium of the toroidal plasma column, and this paper deals 
with its statement and methods of solution. In contrast to the problems in 
simulation of the transport processes, which are solved with the use of one
dimensional codes, the main question here is the evolution of the geometry of 
plasma configuration. 

In the simplest case of tokamak with a circular cross section, large aspect ratio 
Rib (where R is the major radius and b is the minor radius of the plasma) and 
intermediate pressure (3 = 8r(P)IB:- b1/R2q~(where {P) is the mean pressure, B. 
is the longitudinal magnetic field, and qb is the stability safety factor at the 
plasma boundary) the variation of the geometry amounts only to a small (- b{jql~/b) 
displacement of the centres of the cross sections of the magnetic surfaces while 
their circular shape remains unchanged (see Fig. l.la). For high plasma pressure 
(3 - b/Rqt the variation of the shape of the magnetic surface is comparatively 
small but their displacements (- b/2) are large (Fig. l.lb), and for very high 
pressure {j - 1/qt the shape of the cross section of the magnetic surfaces is 
changed significantly (Fig. l.lc). The external fields needed to maintain the 
equilibrium must vary accordingly. 

The variation of the equilibrium during discharge is especially large in the 
toroidal systems with noncircular, for instance, elongated, plasma cross section 
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(a) (b) (c) 

Fig. 1.1. Deformations of the cross sections of 
magnetic surfaces in the shell with the circular cross section owing to increasing 
plasma pressure. (a) {j • 8r p I B;- b21 R2q~, {jJ!!!! 2c2 J pdS/ J2 - 1; 
(b){j- b/Rq~,{jJ- Rlb;(c){j- 1/q~. 

(see Fig. 1.2), such as the Doublet, fmger-ring and belt-ph1ch devices and those 
with a poloidal divertor. Since plasma quality is very sensitive to the contacts 
with the constructional components of the device, it is, clearly, very important to 
develop precise techniques for calculating the plasma shape and controlling it in 
such systems, particularly, for parameters close to the thermonuclear conditions. 

In principle, we can trace the variation of the plasma torus with time using the 
motion equations, that is, the MHD equations including inertia terms. However, 
in these calculations on the short-time scale, of the order of the transit time, 
there can appear oscillations (Alfven, sound) constituting a "noise" which is in
essential on the longer time scale we are interested in but which greatly com
plicates that calculations. Introduction of artificially strong dissipation [1.1) in 
this calculation scheme did not yield successful results. On a time seale longer 
than the fast or inertial scale it is natu,ral to regard the plasma as a quasistatic 
system satisfying the equilibrium equations at any moment (that is, we can 
ignore the inertia terms): · 

I Vp = -ij X B) 
c 

4r 
curlB = -J 

c 

divB=O 

(1.1) 

(1.2) 

(1.3) 

To describe the evolution of the equilibrium we must add to this system the equa
tions describing variations of the current and the pressure of the plasma. Apart 
from the Maxwell equation for the electric field E 

curl E =- ..!.. aB (1.4) 
c at 

we can take the balance equations for the energy and the number of particles (to 
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Fig. 1.2. Evolution of configUrations with noncircular 
cross sections. (a) The decrease in elongation of the cross sections of the 
magnetic surfaces in the D-shaped shell with contraction of the current. (b) For
mation of a split configUration with three axes in the "doublet"-shaped shell 
with contraction of the current. (c) Variation of the shape of the magnetic sur
faces of the plasma configuration with the poloidal divertor with a sharp increase 
in the pressure; the displacement along the major radius is assumed to be com
pensated by the increase in the transverse magnetic field. 
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determine the pressure) and the generalized Ohm's law in the form of the motion 
equation for the electron fluid 

E + _!_ [v. X B) = ..JL + __L_ + R - div r (1.5) 
c u 1 u J. en 

Here R is the drag force with the exception of the explicit terms j 1/u1 and L!u J.• 

and r is the tensor of the electron momentum flux. In the hydrodynamic limit 
tensor r 1s isotropic and div r = Vp0• If the collision frequency is low, the dif
ference div r- R - Vp0 gives rise to "neoclassical" effects. 

Thus, the system of equations (1.1)-(1.5) with the addition of the equations of 
energy and particle balance, in principle, fully describes the evolution of the 
equilibrium plasma configuration (if the right-hand side in Eq. (1.5) is written in 
terms of the plasma parameters) so that it can be calculated on the time scale 
related to the transport processes, rather than inertial oscillations in the plasma. 
Though such calculations can lead to configurations which are, in reality, un
stable, the use of a longer time scale provides for essential simplification of the 
problem. The analysis of stability of equilibrium configurations can be regarded 
as an independent problem to be optimized separately. 

However, we encounter two difficulties here. One is a technical difficulty 
related to the two-dimensional character of the problem. It can be overcome by 
selecting the optimal approach to the development of numerical codes for evolu
tion calculations. The other difficulty has a fundamental character. As it has 
been shown by many years of experimental work on the controlled ther
monuclear fusion, the coefficients of particle and energy transport in the high
temperature plasma are, typically, anomalous so that in fact we have no reliable 
two-dimensional transport equations for calculating the density, temperature and 
pressure of the plasma. But cumbersome calculations based on unreal classical 
and neoclassical transport concepts seem to be unreasonable. This difficulty has 
greatly inhibited the development of methods for calculating the evolution of the 
equilibrium including the dissipative processes. 

The importance of development of methods for calculating the evolution of 
the equilibrium was repeatedly emphasized by Grad [1.2-4] and Taylor [1.5]. 
Connor [1.6] developed Taylor's theoretical concepts concerning the methods 
for solving the "neoclassical" evolution problems. For the dissipation-free proc
esses (tokamak with frozen-in fluxes) the Oak Ridge group [1.7] solved the 
technical problem of realizing the process of determination of the two-dimen
sional evolution. The problem of adiabatic (dissipation-free) evolution of the 
equilibrium with the varying topology of magnetic surfaces (splitting and merging 
of magnetic surfaces) was formulated and partially solved in [1.3, 1.4]. At pre
sent there have been developed numerical codes in which the problem of evolu
tion of the two-dimensional configuration is an integral part of the programme 
for simulating transport processes in tokamaks [1.8). 

In paper [1.9] and in preprint [1.10] which serves as a basis for the present 
paper the problem of evolution of equilibrium was treated independently of the 
transport processes. This made it possible to identify the contribution of this 
problem to the general simulation of the processes in tokamaks and largely 
eliminated the above-mentioned difficulty. 



17 L. E. Zakharov, V. D. Sluifranov 

It has been shown there that, despite the apparent dependence of the magnetic 
field on the velocity of the diffusion of the plasma according to the equation of 
the type of 

a a = curl [v x B) - curl (_!!__ x curl B) 
at 411"u 

(1.6) 

which follows from eqs. (1.4) and (1.5), in reality, the field diffusion and the 
plasma diffusion are, in a sense, unrelated. Let us now analyze the use of the 
Ohm's law in the evolution problems according to the ideas of [1.9, 1.10]. 

Take the projections of the vector equation (1.5) on the normal to the 
magnetic surface, on the vector B and on the perpendicular to them. 

1. The projection on the normal to the magnetic surface 

E · Vp + ..!.. · [B x Vp] = _.!._ (R - div 'T) · Vp (1.7) 
c en 

relates the "radial" electric field of the plasma column E · Vpl I Vp I to the 
rotation speed. These quantities do not enter into the equilibrium equation and, 
hence, this projection is not needed for solving the evolution problem. 

2. The projection on the magnetic surface perpendicular to the vector B 

I B 12 v · Vp = [E X B) · Vp + _.!._ [(div 1r-R) X B) · Vp 
en 

(1.8) 

serves, in principle, for determination of the "radial" plasma velocity 
v · Vp/ I Vp I· In its turn, this diffusion velocity enters into the transport equations 
for particles and heat. But in fact, heat transport is anomalous and there are reasons 
to believe that particle's diffusion is also anomalous. Therefore, the 
pressure and temperature are calculated from various models with adjustable 
parameters. Thus, at present we have no adequate expressions for the quantities 
on the right-hand side of eq. (1.8), and it can be largely regarded as being sym
bolic. 

Hence, the vector equation (1.5) yields only one equation for describing the 
evolution of the magnetic configuration: 

3. The projection of the generalized Ohm's law on the magnetic field is 

E . B = 1...:_!_ + R - div 1r . B (1.9) 
en 

In the collisional hydrodynamic limit the last term in eq. (1.9) vanishes, 
(R - div "T) · B = 0. Fortunately, the experimental results on the plasma con
ductivity largely confirm this theoretical prediction for the available plasma 
parameters. Therefore, we can employ (within certain limits) the "classical" expres-
sion 

E · B = j · B/u1 (1.10) 

as the longitudinal projection of the Ohm's law. 
Equation (1.10), taken together with the equilibrium equations (1.1)-(1.3), is 

sufficient for describing evolution of the magnetic configuration under the 

2-449 
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assumption that we know the time dependences of the pressure p and the 
longitudinal conductivity 111• Since we lack an adequate transport model, it is 
reasonable to assume that these p and 111 are given. We shall refer to the ap
proach based on eqs. (1.1)-(1.3) and (1.10) as the "method of given pressure". 

The meth6d of given pressure allows us to divide the entire problem of 
describing the plasma evolution into two more specific problems, namely, (i) 
evolution of the equilibrium, and (ii) simulation of the transport processes. The 
first problem deals with the geometry and the conditions of the equilibrium of 
the plasma configuration and to solve it we must know only the functions p(t) 
and 11 1 (t) . Other parameters can be needed only if the longitudinal Ohm's law 
differs from eq. (1.10) . In the second problem we employ the results of solution 
of the first problems as the coefficients in the equations for the fluxes of heat 
and particles. Even if the last term in the Ohm's law (1.9) makes a significant 
contributions so that these two problems are combined, the identification of the 
equilibrium evolution is a methodologically useful approach for the development 
of solution algorithms. This gives rise to individual units (packets) in the code 
which can be independently debugged. 

It should be stressed once more that, though this approach employs the 
"classical" expression for the longitudinal projection of Ohm's law, eq. (1.10), it is, 
by no means, dependent on its classical formulation 

E + ..!_ [v X B] = l_ (1.11) 
c 111 

which yields a comparatively low diffusion speed of the plasma. If diffusion does 
not correspond to the simple Ohm's law (1.11) but if the longitudinal projection 
(1.10) is valid, the Ohm's law can be expressed phenomenologically as 

E + ..!_ [(v - v•) X B] = l_ (1.12) 
c 111 

where v• is the anomalous diffusion velocity. In the simplest cylindrical case one 
of the two components of this equation (v = v Q) 

E, - ..!... (v - v•) B. = j,/111 (1.13) 
c 

E. + ..!... (v - v•) B, = j,/111 
c 

(1.14) 

for instance, the first one can be used for determining the speed of the plasma 
motion 

E . 
v = c ....!.. - CJ, + v• (1.15) 

B. 111B, 

Here we denote the cylindrical coordinates by Q, 8 and s. 
After we have eliminated the speed from eq. (1.14), we have only eq. (1.10) 

left. As it will be shown below, eq. (1.10) describes the mutual diffusion of the 



19 L. E. Zakharov, V. D. Shtifranov 

poloidal and longitudinal magnetic fields, which always proceeds with the skin 
time Tsk = ?rutr/cfl (where b is the minor radius) irrespective of the anomalous 
diffusion speed v•. Here we can even assume that, for instance, the plasma is 
ideally conducting, u1 = oo (E · 8 = 0, mutually frozen fluxes), irrespective of 
the value of v•. 

If the term - (R - div 1i') is significant in the Ohm's law (1.5) and, in particular, 
in eq. (1.9) for its longitudinal component, then we encounter some qualitative 
peculiarities in the evolution problem. For instance, in the axially symmetric 
systems (iJ!iJs = 0, s is taken along the major axis of the torus) we can 
sometimes assume that (R - div li'), = 0 but, at the same. time, the poloidal 
component of this term (along the minor axis of the torus) differs from zero. 
Then the right-hand side of eq. (1.13) acquires the additional term 
(R- div """ir),len which is not related to the current density j,. Introducing a 
convection velocity Veo we can write it as (1/c)v.B. (1.11). Then eqs. (1.13) and (1.14) 
can be written as the following system: 

E, - _!_ (v. + v - v*)B, = j,/u1 (1.13*) 
c 

E. + _!_ (v - v*)B, = j,/u1 
c 

(1.14*) 

The difference between the speeds determining the convention of the magnetic 
fields relative to the plasma in eqs. (1.13) and (1.14), as noted in [1.12], results 
in convective transfer of the poloidal magnetic flux with respect to the 
longitudinal flux. In this paper with its emphasis on the methodology of solution 
of the evolution problems we shall neglect the effects of mutual convection of 
the magnetic fields for the sake of simplicity and assume v. = 0. 

Thus, the solution of the entire problem of evolution of the toroidal plasma 
column is divided into two stages: 

1) The solution of the two-dimensional system of equations (1.1)-(1.3), (1.9) 
and (1.10) with the given p and u1• 

2) A more or less standard calculation of the density and temperature of the 
plasma using the heat and particle transport equations and various models for 
finding p and u1• 

Owing to the lack of reliable transport equations in the first stage of the study 
of evolution of the magnetic configuration the natural approach is to take 
reasonable distributions of p and u1 on the magnetic surfaces and to focus atten
tion at solving the first problem. Then it will not be difficult to add equations 
for calculating n and T and, respectively, p and u1• 

1.2. Evolution Equations 

To explain the statement of the problem in our method of given pressure let us 
apply eq. (1.10) to the current-carrying plasma with cylindrical geometry in the 
longitudinal magnetic field. The case of strong and almost constant longitudinal 
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fields B. ~ B, with aB.!at is trivial. In this case eq. (1.10) yields 

}. = u.£. (1.16) 

and we come just to the problem of skin effect for the poloidal component B, in 
a medium with the given u1 (Q, t) proflle: 

aB, = _a_~_!_ _a_ (QB,) (1.1?) 
at aQ 411'u, Q aQ 

The longitudinal magnetic field acts as though a framework of the system, ad-

justing owing to small changes aB.!aQ = 
equation 

411' . 
--J· 

c 
to the equilibrium 

ap = _!_ u. B. - J.B,) 
aQ c 

(1.18) 

so that this equation does not affect the evolution of B,. The situation is quite 
different if B. :S B, (stabilized pinch) or the variation of B. is large (for instance, 
with adiabatic compression of the plasma in tokamak). In this case the poloidal 
projection j, of the current can also make a significant contribution to j · B. Ob
taining from the equilibrium equation (1.18) 

. . B, c ap 
}o =].- + ---

B. B. aQ 
(1.19) 

and eliminating it from eq. (1.10), we have 

E. D E' o B2 ( • B, ap) ..... + -· = -- }. + c--
u.B? B? aQ 

(1.20) 

Let us introduce the "toroidal" (longitudinal) flux 4> and the external 
"poloidal" flux 't' by 

a"+" B,=--aQ , 

1 a't' E.=----, 
c at 

B.= _1_ a<~> 
211'Q aQ 

1 a<~> E,=--·---
211'QC at 

(1.21) 

(1.22) 

Then the system of equilibrium equations (1.1)-(1.3) and the Ohm's law (1.10) 
can be written as 

a't' + ......!!!__ a<~> = ~ B2 _!_ _a_ Q a't' _ c2 ....!!!.._ ap (1.23) 
at 21rQB. at 4'll'u1 B? Q aQ aQ u1 W. aQ 

....!!!.._ _a_ QB, + B. aB. = - 4'll' ap (1.24) 
Q aQ aQ aQ 

when B. ~ B,, even if the variation of the longitudinal field with time is great its 
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gradient remains close to zero, according to the equilibrium equation (1.24), for 
low plasma pressure 81rp <CB~ (owing to high heat conductivity or strong cooling 
by radiation, high diffusion of particles, etc.). Then eq. (1.23) has the form of 
the equation of diffusion with convection: 

a-t e iJ. a-t c2 1 a a-t · -----=----e- (B,=aB,tat) 
at 2 B, ae 4?ru1 e ae ae 

(1.25) 

Here the rate Vcon of convection of the poloidal flux "+' is determined by the rate 
of variation of the longitudinal magnetic field as if it were in the motion of the 
plasma with frozen toroidal flux: 

r! B, 
Vcon =- --

2 B, 
(1.26) 

in fact, Vcon = v - v• (see eq. (1.12)) has nothing in common with the plasma 
speed v which can even have the opposite direction (that is, diffusion can over
come the pinching of the plasma by the compressing magnetic flux, I v• I > 
Vcon). 

Below, as an illustration, we shall solve eqs. (1.23) and (1.24) for the cylinder. 
Let us now modify the system of equations (1.23) and (1.24) describing the 

evolution with time for the two-dimensional case. 
In the case of cylindrical symmetry the magnetic surfaces automatically coin

cide with the coordinate surfaces e = const, significantly facilitating the solution 
of the problem. In the case of toroidal geometry the current lines j and the 
constant-pressure levels p(r, t) = const lie on the magnetic surfaces which are, 
typically, taken as the coordinate surfaces [1.13-15]. We shall assign to each of 
them a scalar parameter a which monotonically increases with increasing distance 
from the magnetic axis. In principle, the "radial" coordinate a in such a coor
dinate system may be any "surface quantity", for instance, the volume V 
bounded by the magnetic surface. We can also identify a with one of the 
magnetic fluxes of the magnetic field which are to be determined providing thus 
for the "reversal" of variables so that the normal coordinates r and z are to be 
found. 

Our formulation of the evolution problems does not depend on the choice of 
the surface function a but this choice is important for the solution of specific 
problems. We believe that the treatment here should be based on the minimiza
tion of convection across the surfaces a(t) = . const. From this viewpoint it is 
definitely a suboptimal approach to use, as it is frequently done, as the radial 
coordinate the poloidal flux + which is the main varying function of time in the 
process of evolution. A more convenient approach, both physically and com
putationally, is to relate the radial coordinate a either to the flux ~ of the 
longitudinal field, or to the normalized volume V /V0, or cross-sectional area 
SIS0 of the magnetic surfaces (here V0 and S0 are the volume and the cross-sec
tional area of the boundary magnetic surface). It is convenient here to identify a 
with the effective minor radius which is related to the above quantities and tends 
to Q in the limit of the straight plasma column with the circular cross section. 
Then all the equations will have a quasicylindrical form and can be easily made 
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z z 
a= const a 1 = cons! 

I 

a2 = const 

(a) (b) 

Fig. 1.3. The use of the magnetic surfaces as natural 
coordinates for simply connected configuration (a) and for the triaxial con
figuration (b); (al, 81, n. (az, 8z, n-the coordinates in the region of separated 
poloidal fluxes, (a3, 83, .I)-the coordinates in the common flux region. 

consistent with the conventional quasicylindrical formulation of the transport 
processes. 

Apart from a, two cyclic coordinates 8 and .I are used; they vary from 0 to 211' 
alo~g the minor and major circuits of the torus respectively (see Fig. 1.3). Of 
course, this coordinate system is applicable whithin the simply connected system 
of the magnetic surfaces, that is, only up to the separatrix. In the presence of an 
island structure (multiply connected configurations) we must take into account 
the conditions for matching the solutions for the constituent simply connected 
regions. 

In the theory of equilibriltm of the toroidal plasma the electric currents and 
the magnetic fields are described by integral characteristics, namely, the currents 
and magnetic fluxes across two independent contours on a given magnetic sur
face. The longitudinal (toroidal) current J(a) flux 4> (a) are related to the contour 
encircling the magnetic axis. When a - 0, the contour is contracted to a point 
and hence J(O) = 4> (0) = 0. The poloidal current and flux are related to the 
contour encircling the major axis of the torus. It should be noted that they can 
be taken either from the major axis of the torus or from the magnetic axis. In 
different papers an equilibrium and stability these parameters are defined and 
designated in different ways, which results sometimes in confusion. In our opi
nion, it is reasonable to denote the poloidal current and the flux across the hole 
of the torus by F and-+ (see Fig. 1.4). At the major axis F and-+ are zero. The 
parameters reckoned from the magnitic axis will be denoted by /(a) and x(a); 
/(0) = 0, x(O) = 0. The relationship between them is given by 

F(a, t) = F0(t) - !(a, t), 
"+(a, t) = -+'0(1) - x(a, t) (1.27) 
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Fig. 1.4. Convention for the poloidal fluxes 1/l(a), x(a) 
and the poloidal currents F(a), I(a) in the equilibrium configuration. (a) 1/l(a) is 
the flux between the symmetry axis and the magnetic surfaces including the flux 
of the inductor with the current / 1, the external part of the flux of the plasma 
and the equilibrium windings with the currents J m; x(a) is the flux between the 
magnetic axis and the surface. (b) F(a) is the poloidal current between the sym
metry axis and the magnetic surface including the current IT of the coils of the 
longitudinal field; /(a) is the poloidal current between the magnetic axis and the 
magnetic surface. 
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where F0 and Y 0 are the total poloidal current and flux encircling the magnetic 
axis. The functions /(a) and x(a), naturally, enter into the expression for the 
poloidal current density and the poloidal field if only the region of plasma in the 
equilibrium configuration is considered (for instance, in the analysis of internal 
instabilities). 

Let us compare our notation with that of some other papers. In [1.16] the 
coordinate system was a, t, 8, rather than a, 8, t, and therefore I and x denoted 
in [1.16] by J3 and Y3 [see eqs. (3.19) and (3.20)] enter into eq. (1.27) with the 
plus sign. In later papers on stability and equilibrium in the toroidal systems 
[1.17, 1.18] the equivalent of our notation x was used but the poloidal current I 
was denoted by -F. 

The quantities Y, «1>, F and J are simply related to the circulations of the vec
tor potential A and the magnetic field B, which can be found from the equations 
B = curl A and (4?1"/c)j = curl B: 

Y• JB ·dS. = fA· dlr 

«<>• JB ·dSr = fA· dl. 

4'11' 411' 
- F • - Jj · dS. = fB · dlr 

c c 

411' 4?1" 
- J • - JJ · dSr = fB · dl. 

c c 

In these case of axial symmetry eq. (1.28) yields 

4?1" 
--F = 2'll'r B. 

c 

(1.28) 

(1.29) 

and, in particular, at the magnetic axis we have (4T/c)F0 = 2'li"RB. and E. = 
i-0/(l'li"Rc). For the poloidal components BP and Jp we obtain 

1 1 Bp = - [VY X Vt] = - [V!' X Vx] 
2?1" 2?1" 

1 1 Jp = - [VF X Vt] = - [V!' X Vl] 
2'11' 2?1" 

(1.30) 

where t is chosen according to the symmetry; a/iJt = 0. Substitution of 
eq. (1.30) into eq. (1.1) and the use of p = p (Y) and F = F (Y) lead to 

. 2 ( I FF 1 4?1") J, = ?I"CT p + -- · -
4,...z,.z c2 

(1.31) 

and the equilibrium equation acquires the form 

. VY a2Y 1 a... a2Y 411' ( I FFI 411' ) ,.z d1v -=---- -+--= --. c. 411'2 rp +--.-
,.z ar r ar az2 c 4'11'2 c2 

(1.32) 
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The factors 4'li'/C and c are shown explicitly here to facilitate conversion to 
another system of units. 

The geometry of the chosen coordinate system in the evolution problems, as in 
the problems of hydromagnetic stability, can be usefully described by the metric 
tensor determining the element of length 

dfl = g11da2 + 2gudad8 + g2z(i82 + g33dt'2 (1.33) 

(in the case of axial symmetry g33 = il). 
The contravariant magnetic field components B' and the contravariant current 

density components)' (B' • B · Vx', x' = a, 8, t) in these coordinates are ex
pressed in terms of the integral quantities in the following form (g = det g,.): 

B' = [ 0 - +'(a) ~'(a) + a'T/ta8J 
• 2 7f ...;g • 2'll' ...;g 

[ 0 - F'(a) J'(a) + a,tae J 
• 2'll'..jg • 27f..Jg 

(1.34) 

j' = 

The equations of equilibrium and magnetostatics (1.17)-(1.3) now have the form 

c · 4'll'2p '..Jg = - F' ( ~' + ::) + ( J' + :) · +' (1.35) 

~(J' +a") =- ~k+· + ~ gu +' 
c a8 aa ...;g an ...;g 

(1.36) 

~F =.£H.(~·+ a'TI) 
c ...;g a8 

(1.37) 

Note that we can choose the angle 8 so that the field lines in the 8, t coordinates 
be straight, B2/B3 = f(a). This can be done if g33/..jg is a function of only a (then., 
= 0). In some cases 8 is chosen according to the condition of orthogonality of the 
coordinates or some other considerations. 

In the equilibrium configuration with the parameters varying with time our 
coordinate system is moving in space. Therefore, the longitudinal Ohm's law 
(1.10) together with eq. (1.4) must be written in the moving coordinate system. 
As shown in Appendix, these equations averaged over the magnetic surfaces yield 
the following equation of evolution for the most general form of a(r, t): 

~· a+ -+' a~ = ..i!_ (JF' _ FJ'> 
at at u• 

Now introduce the notation 

"+' 
b, =- --· 

2'li'R 
~· b,=--
21fa 

(1.38) 

(1.39) 

where R = const is a characteristic major radius of the configuration. Equation 
(1.38) together with the averaged equilibrium equation (1.35) comprise a system 
of two equations describing the evolution of the fluxes + and ~ and having the 
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quasicylindrical form (eqs. (1.23) and (1.24)): 

a't + R b, a~ = c2 ( R Kzz ) ( y'g) p' 't, 
at a b. at u1 a y'g aR 1r. 

(R k)bi + bz (R y'g) 
+ ~ a y'g • a 8 !...!(R k) a a't 
~~ lr. a~ a y'g ~ 

4rp'(:J.) + ~ ~t ~)ab,+b,~(-'"-~) ~o 
, a K33 

(1.40) 

(1.41) 

The coefficients averaged over the angle 8 (denoted by the angle brackets) should 
be calculated using the solution of the two-dimensional equilibrium equation 
(1.32) or the variable part of eq. (1.36) which is equivalent to it: 

- 4r FF' (.fi) - 4r2p'. c. (..fg) = 't' _! (i22\ 't' -'t'z_! Klz (1.42) 
c g31 aa ..;g) ae ..;g 

Here C ) denotes the oscillating part: ( .Ji> = v'c - <-fi). 
In the closed system of equations (1.40)-(1.42) the first two equations describe 

redistribution of fluxes over the magnetic surfaces and eq. (1.42) describes the 
evolution of the geometry of the system of magnetic surfaces. 

In the tokamak, when we have aiR ..c 1, B,!B, ..c 1, af3JIR ..c 1 (here 
{3J • 2c2 f p dSI.P) and a stationary longitudinal field (aB.!at = 0), eq. (1.40) is 
simplified and, to the first order in the above parameters, has the form 

a't - ~ 1 !. _! ( R k) a a't (1.43) 
at - 41fu1 (.!i y'g ) a aa a y'g aa 

a K33 

This equation, together with eq. (1.32) or eqs. (1.41) and (1.42), can be used for 
describing evolution, for instance, in the tokamaks with noncircular cross sec
tion. 

Let us discuss the boundary conditions for eqs. (1.40)-(1.42). The main ques
tion here is how to choose the plasma boundary, which is equivalent to choosing 
u1 (a, t). Within the framework of the method of given pressure we can take any 
surface of the radius a0(t) as the plasma boundary outside of which u1 is assumed 
to be zero. It should be borne in mind, however, that in fact this boundary is 
determined by plasma diffusion and therefore, we must have additional reasons 
for choosing a0(t). 

Let us first consider the plasma bounded by an ideally conducting shell. The 
shell is a magnetic surface with a = a0 fixed in space, and it is natural to take 
the boundary conditions on it. Regarding the first of the system of equations 
(1.40) as the diffusion equation for the poloidal flux 't, we can either stipulate at 
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the boundary the emf 
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1 (Jy 
B(t) =- --

c at 
a= a0 

or the total plasma current 

lo(t) = J(a0, t) = - ( ~ ) Y' 

as functions of time. 

(1.44) 

(1.45) 

a= a0 

If matching with the primary circuit of current generation is required, then we 
have to identify in eq. (1.44) the emf of self-induction of the plasma column: 

e , = - ! Lzz !!:!J. (1.46) 
p c dt 

Here L 22 is the inductance which is equal to that for the superconducting torus 
whose shape coincides with the shell. For the simplest primary circuit comprising 
capacitance C1, resistance R 1, inductance L11 and a power source with the emf 81, 

whose mutual inductance for the plasma is L 12, we obtain the following bound
ary condition: 

- ! dYo =- ! Lzz dJo - ! Lu !!II (1.47) 
c dt c dt c dt 

J!i!!. + R/, + ! Lu !!II = 81 - ! L12 dJo (1.48) 
c, c dt c dt 

Here / 1 has the sense of the current in the primary circuit. 
The averaged equation (1.41) should be regarded in the evolution problem as 

the equation for determination of the longitudinal flux. It has the following for-
mal solution: " ' 

( !i ~ r b1, - ~ [ 4rp' (!) + ~ :. t ~) ob~ ( !i ~ t49) 
ah ah 

The constant b,0 is chosen so that to provide either the given total longitudinal 
flux in the plasma 

(1.50) 

or the given poloidal current F0(t) in the windings producing the longitudinal 
field, 

~ FJI) ~ (:,)1 0 ~ 00 

(1.51) 
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The equilibrium equation (1.32) with the known right-hand side is solved with 
the conventional boundary condition on the shell 

'+" I ••• 0 = const (I. S2) 

where the constant is found from the solution of eq. (1.40). 
If the plasma equilibrium is maintained by the external maintaining fields, 

then the boundary conditions should be taken at some surface a = ap) moving 
in space. The first- and second-kind conditions (1.44) and (1.45) for eq. (1.40) 
and the conditions (1.50)-(1.52) for eqs. (1.41) and (1.42) have the same form as 
in the case of the shell. If matching to the primary circuit is required, we must 
bear in mind the following fact. The surface of the plasma column becomes a 
magnetic surface only in the presence of currents producing definite maintaining 
fields related to the plasma current by the equilibrium conditions. Therefore, we 
should regard as the secondary circuit the entire system of the plasma current J0 

and the equilibrium currents Jim (i = 1, 2, ... ) in the shaping coils. 
The emf of the secondary circuit at the plasma boundary is determined by the 

flux '+" eq• 0 of the equilibrium field comprising the own flux '+"pi of the current in 
the plasma column and the flux '+"ext of the maintaining fields: 

822 =-! d'+"eq,O = _l.fl.. ('+pi+ '+ext) (1.53) 
c dt c dt 

The emf induced by the secondary circuit in the primary circuit is determined in 
a similar way: 

_ 1 _d't__::e,.,g,'-'1,_,2 812---
c dt 

(1.54) 

Here '+" eq, l2 is the flux of the equilibrium configuration across the circuit that 
generates the current. If we use eqs. (1.53) and (1.54) instead of the similar ex
pressions for the emf, (1/c)d(L 2z)0)/dt and (llc)d(L 1z)0)/dt, then boundary con
ditions (1.47) and (1.48) are also applicable to the plasma whose equilibrium is 
maintained by external confining fields. 

Of course, there can be used other "electrotechnical" systems for current 
generation and maintenance of equilibrium. But since it is necessary to control 
the position of the plasma column, the system should include currents strictly 
related to the plasma current by the equilibrium conditions, which, as noted 
above, together with the plasma current should comprise an integral secondary 
circuit. Then all the other external currents are automatically regarded as the 
primary circuit which differs, to a greater or lesser degree, from the circuit used 
in derivation of eqs. (1.46) and (1.47). 

Now let us discuss the frequently used formulation of the problem in which 
the plasma is assumed to be ideally conducting (u1 = oo ), that is, in which all 
the processes occur in a time which is small in comparison with the skin time. 
Equation (1.40) indicates the mutual frozenness of the fluxes, '+" = '+"(~). If we 
assume that the plasma have the frozen longitudinal flux (no diffusion), then 
eq. (1.41) gives the dependence ~(a), and, moreover, the radius of the boundary 
magnetic surface. In these conditions the poloidal surface current ip(8) and the 



29 L. E. Zakharov, V. D. Shtifranov 

longitudinal surface current i,(O) can flow along the plasma boundary; 
absence of pressure jump these currents are related by 

( 41f ) 2 ( 41f ) 2 Bpi + --;- is - B~i + Bsi - --;- ip - B~ = 0 

in the 

(1.55) 

The subscript i in eq. (1.55) indicates that the values are taken at the inside of 
the plasma boundary. The amplitudes of the surface currents are determined by 
the primary circuit which gives, for instance, the total longitudinal current J0 and 
the poloidal current / 0 = I(a0) in the plasma column. Since the distributions 
Bpi(O) and Bsi(O) are found from the condition of frozeness and the solution of 
the internal equilibrium problem and the distribution ip(O) - l!r is known, 
eq. (f.55) is sufficient for determination of the function i,(O). It should be borne 
in mind, however, that eq. (1.55) should be solved together with the two-dimen
sional internal equilibrium equation. 

Thus, even in the simplified approach using given functions p(a, t) and u1(a, t) 
the problem of evolution reduces to solving several simultaneous equations (1.32) 
and (1.40Hl.42), and since they are two-dimensional, the calculations seem to 
be rather cumbersome. We must understand, at least qualitatively, the main 
features and trends of evolution of the equilibrium of plasma configuration in 
order to develop numerical methods of solution selecting the optimal procedures 
and providing for reliability of the calculated results. 

Therefore, we believe it will be useful to discuss first some simple typical cases 
illustrating the specific features of the problem. 

1.3. CyHndrical Plasma Column 
with Circular Cross Section 

The evolution of this simplest configuration is described by two one-dimen
sional equations (1.23) and (1.24) the first of which is similar to the equation of 
diffusion of the magnetic field in a solid conductor. This similarity is highly 
useful for the development of solution methods but it is entirely valid only in the 
special case (though it is practically the most important one currently) of the 
strong stationary longitudinal field B, :.- B,, low plasma pressure {3 -c 1 and in 
the absence of noticeable plasma diffusion. Let us show for the case of the 
straight plasma column with circular cross section the difference between the 
evolution problem in the simplest one-dimensional formulation and the conven
tional diffusion equation. 

Consider a plasma column enclosed by a shell of radius b and assume that a 
negligibly low plasma pressure is maintained, for instance, owing to strong radia
tion, p = 0. This configuration is force-free and the magnetic fields are related 
by the equilibrium expression j,B, = j.B,. In a strong field with B, > B, this ex-

pression is satisfied owing to the weak poloidal current ~ j, =- dB,! de so 
c 

that we can ignore the variation of the longitudinal flux in eq. (1.23). 
The equilibrium equation starts to play a significant role for B, > B,. If the 

current growth time t is shorter than the skin time Tsk = 1ru1b2!cZ and the 
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Fig. 1.5. The distributions of the conductivity a 11 , 

current density j, and the magnetiC fields B, and B6 along the radius for fast cur
rent growth; t < rsk' B6 > B, for t = 0. (a) The initial distributions (t = 0), no 
longitudinal current. (b) Compressed state in the case of weak plasma diffusion, 
Tdif > t. (c) Compression of the longitudinal flux by the poloidal field in the 
absence of plasma constriction for the case of high diffusion, Tdif < t. 

plasma diffusion time Tclif• then eqs. (1.23) and (1.24) describe the conventional 
case of the pinch effect with magnetic fluxes frozen into the plasma. Denote the 
initial plasma radius by a0(0) and assume that the region between the plasma and 
the shell has the zero conductivity a 1 (see Fig. 1.5). When the current increases, 
the plasma, naturally, does not behave as solid conductor but is compressed ow
ing to the pinch effect. The plasma radius a0(t) is determined from the conditions 
of frozenness and the equilibrium equation 

B~ = BJe + (2//ca0) 2 j Bsia~(t) = Bs()O~(O) 
Bse[b2 - a~(t)] = B.s{)[b2 - a~(O)] (1.56) 

Here Bsi and Bse are the longitudinal fields inside and outside of the plasma and 
B.s{) is the initial longitudinal field. The solution of eq. (1.56) has the simplest 
form if a0(0) = b. Then a0(t) = b forB, < B, and a0(t) = bBsafB, forB, > B,. 

In the above case with t < T eli! the boundary of the plasma conductivity and 
the current shell coincided. 

Now let us treat the unconventional case in which the diffusion is so high that 
I > Tctif but, as above, I < Tsk· Under such conditions plasma does not sense the 
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Fig. 1.6. The adiabatic compression of the cylindrical 
plasma column by the longitudinal field with simultaneous current growth, p = 0. 
(a) The initial distribution (t = 0), the longitudinal current is uniform. (b) Com
pressed state in the case of weak diffusion T dif > t, the additional current has the 
surface character. (c) Compression of the poloidal flux by the longitudinal flux 
in the absence of plasma constriction for the case of high diffusion, Tdir < t, the 
additional current is distributed over the volume between a0 and b. The plasma is 
paramagnetic, the declining profile B. is related to the assumption that the 
pressure is negligible, p = 0. 

magnetic field and the conductivity may be regarded as being uniform up to the 
shell. 

How will the current increase under such conditions? In contrast to the con
cept of current diffusion in solid conductors, the current increase will proceed in 
the same way as in the above case (see Fig. 1.5). In particular, the radius a0(t), 
which now has the meaning of only the radius of the current shell, can be deter
mined from eqs. (1.56). Outside the current shell where the longitudinal field is 
zero the current density is also zero in accordance with the "force-free" model. 

The fact that eq. (1.23) of the type of the diffusion equation can describe 
"nondiffusive" current penetration is due to the nonlinearity of the diffusion 
coefficient [cZ/(411'u1)] (B2/B~) which tends to infinity for B. - 0, in spite of the 
high conductivity. 

The possible independence of the plasma diffusion from the diffusion of 
magnetic fields should also be taken into account for so-called adiabatic com
pression of the plasma column by a strong longitudinal field. If the process time 
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Fig. 1.7. The skin effect in the cylindrical plasma col
umn in the case of a high longitudinal field, B,IB. = 0.3, u1 = const, p = 0. (a) 
Variation of the current with time. (b) Evolution of the current density distribu
tion j.. (c) Evolution of the longitudinal field B.. (1) tiT,k = 0.1; 
(2) tfT,k = 0.2; (3) f/Tsk = 0.3; (4) t/T5k = 1.0. 

t is shorter than the skin time Tsk• then the conditions of mutual frozenness of 
the fluxes Y(~) yields, in particular, the frozenness of the safety factor q 
= q{~) =- d~!dt. In a strong longitudinal field when 

aB. c ~ 
q = - = -- (1.57) 

RB, 2?rR J 

this frozenness reduces to the frozenness of the current J(~). 
If t < T dif• the course of the process is trivial and the plasma is compressed 

according to the growth of the field: 

aW) = B.(O) (1.58) 
a3(0) B.(t) 
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Fig. 1.8. The process of current increase in a weak 
longitudinal field, B/Bs = 1.25 (stabilized pinch), u1 = const, p = 0. (a) Variation 
of the current with time. (b) Evolution of the current density distribution j 5 • 

(c) Evolution of the longitudinal field 8 5 • (1) tiT,k = 0.1. (2) tiT,k = 0.2. 
(3) tiT,k = 0.4. (4) tiT,k = 1.0. 

If the external circuit determines the total current as a function of time, then the 
surface current J. can appear at the plasma boundary (see Fig. 1.6). This results 
in the formation of a configuration with a smaller radius, constant bulk current 
and some surface current. 

If for t > T dif and the plasma has time to diffuse across the field, the resulting 
configuration will differ from the above one in that the current J., which was a 
surface current, will be distributed over the external region. The current distribu
tion can be found from the condition (1.57) of frozenness of the current, if we 
know the mutual matching between the inducing circuit and the growth of the 
longitudinal field, that is, 1(41), and from the condition that the fields outside 
the compressed flux is "force-free". 

Note that though the picture of compression of the magnetic fluxes in the in
ternal region is the same, irrespective of the ratio between t and T dif• the heating 
of the plasma will, naturally, depend on this ratio. 

The above case of compression of the cylindrical plasma column by the 
longitudinal fields is close to the case of displacement of the toroidal column 
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along the major radius in the stationary longitudinal field. If the time of com
pression is shorter than the skin time, then the condition of conservation of the 
fluxes yields the following relations for the variation of the radius a0(t) bounding 
the initial flux and the variation of the bulk current: 

al(t) _ R(t) 

ai(O) - R(O)' 

J(t) = R(O) 

J(O) R(t) 

Since the flux of the field of the plasma current is 

t' 1 = 2rR J [ln BR _ 2 + 0 (A)] 
P c a0 R2 

(1.59) 

(1.60) 

the variation of the bulk current, to a logarithmic accuracy, corresponds to the 
conservation of this flux. However, the flux due to external sources enclosed by 
the column can change significantly in the process of compression, givirig rise to 
an additional current J.. In this case, too, this additional current can be dis
tributed either at the survace or over a layer into which the plasma had time to 
diffuse, depending on the relationship between the compression time t and the 
diffusion time T dif· When t < T dif• the current distribution along the minor 
radius is determined by the frozenness conditions. 

Figures 1. 7 and 1.8 illustrate the growth of current for the cylindrical column 
[1.9] under the conditions of finite conductivity for u1 = const and p = 0. 
When B,(b) -c B. (Fig. 1.7), we encounter the normal skin effect; when B,(b) = 
= 1.25B. (Fig. 1.8), the compression of the longitudinal field determined by the 
equilibrium conditions becomes significant, effectively enhancing penetration of 
the longitudinal field into the plasma. 

1.4. Evolution of High-Pressure 
Toroidal Configurations 

Let us now analyze the two-dimensional effects in evolution of the 
equilibrium. The main such effect is the ballooning of the plasma column along 
the major radius due to the toroidality of the configuration. The ballooning 
necessitates application of external confining fields to maintain the equilibrium 
and results in toroidal displacement of the magnetic surfaces. This effect should 
make an important contribution to the evolution of equilibrium in high-pressure 
tokamaks. 

Detailed analysis of the fast heating of plasma in tokamaks due to neutral in
jection gave rise to the concept of the so-called flux-conserving tokamak (1.19]. 
The underlying idea of this concept is that if the plasma is heated in a time 
shorter than the skin time, then the plasma configuration changes according to 
the condition of frozenness of the fluxes. Therefore, the topology of the con
figuration cannot change, making it possible to reach arbitrarily high pressures 
without violating the equilibrium conditions. For instance, numerical calculations 
[ 1. 7] have demonstrated the existence of equilibrium configurations with 
{3 = 81r (p) I m ~ 200Jo (qb ,.. 3). 
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We should note here that though the formulation of this concept implies 
fluxes frozen into the plasma, the mutual frozenness of the fluxes is sufficient 
for conservation of the topology. In particular, the relationship between the 
plasma heating time and the plasma diffusion time is insignificant. The rate of 
diffusion can be as high as desired without violating the topology (naturally, 
necessitating a respective increase in the heating power). 

The configuration produced as a result of fast heating may change its topology 
owing to mutual diffusion of the fluxes so that it can even become non
equilibrium. The analysis of this situation should be based on the evolution 
equation (1.40) and the averaged equilibrium equation (1.41), and it is essential 
that the two-dimensional character of the configuration and the conditions of 
solvability the equilibrium equation (1.42) be taken into account. Let us analyze 
qualitatively the process of decay of a high-pressure configuration without going 
into details. 

The possibility of decay can be explained in the following way. Let a plasma 
column with a small toroidality aiR <C 1 and the uniform conductivity u1 = const 
be in a strong longitudinal field. The stationary state (that is, the state with sta
tionary fields) is the state described by the evolution equation (1.40) the left
hand side of which is replaced with the emf e. The current density averaged over 

z z 

0 0 

(a) (b) 

Fig. 1.9. The topology of the high-pressure configura
tion with frozen fluxes. (a) No surface current at the plasma boundary. (b) Con
figuration with uncompensated surface current; despite the frozennes of the 
fluxes the separatrix is at the plasma boundary. 
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the magnetic surface is approximately uniform and the total current is approx
imately ra2u1e. We know from the theory of equilibrium that for a given current 
there is a limiting pressure owing to the appearance on the inner side of the torus 
of a point with the zero poloidal field (the maintaining transverse field becomes 
equal to the plasma-generated field). For a given plasma current the pressure 
cannot exceed this limiting value which corresponds to {3""' a/(Rq)2 (where 
q "' ca2B,/2(RJ)). 

The configuration obtained unter the condition of flux conservation is nonsta
tionary. Let us discuss the processes accompanying its evolution to the stationary 
state. Consider a high-pressure plasma column whose equilibrium is maintained 
by external fields. When the pressure increases while the fluxes are conserved the 
bulk current increases and special measures should be taken to eliminate the 
generated surface current. Otherwise, the x points of the separatrix will appear 
just in the process of pressure growth on the inner surface of the column (see 
Fig. 1.9) and this will immediately disturb the topology of the configuration. If 
the surface current is eliminated (by means of variation of the external poloidal 
magnetic flux), then the separatrix surface will be outside the plasma but with 
time it will approach the plasma boundary owing to the decrease in the total cur
rent and its redistribution due to the finite conductivity. 

At a certain moment the x point of the separatrix will reach the boundary, as 
a result an analogue to the divertor layer will be formed and the plasma will 
begin to spread out along the open field lines with the speed of sound, exposing 
the internal magnetic surfaces. This process of stripping of the external envelope 
depending on the pressure distribution may prove to be unrelated to the skin ef
fect (a peculiar instability of the equilibrium). The process will be terminated if 
the pressure after some decrease in the column size satisfies the stationarity con
ditions. 

Though the time in which the separatrix reaches the plasma boundary is deter
mined by the diffusion of the magnetic fields, it can be considerably shorter than 
the skin time. 

(a) (b) (c) 

Fig. 1.10. Evolution of the high-pressure plasma with 
a finite conductivity maintained at equilibrium by the ideally conducting shell. 
(a) Initial configuration. (b) Configuration with the decreased poloidal flux be
tween the plasma and the shell. (c) Limiting configuration without any flux be
tween the plasma and the shell. 



37 L. E. Zakharov, V. D. Shcifranov 

Thus, in the case of high-pressure plasma column maintained at equilibrium by 
external fields we should expect that the decay of the configuration will be due 
to the appearance of the x point of the separatrix at the plasma boundary. This 
leads to the question whether we can prevent the decay by specially choosing the 
maintaining fields or, for instance, enclosing the plasma by a high-conductivity 
shell which, at first sight, would not allow the separatrix to appear in the con
figuration. 

However, even under these conditions the decay can occur. Assume that the 
plasma column with the radius a is enclosed in a shell of the radius b with a cir
cular cross section (see Fig. 1.10). If the pressure is low, (3J - 1, the displace
ment of the plasma column is described by the well-known equation 

b2
[ b ( oZ)( f. 1)] .i = 2R In -;; + 1 - bZ (3J + ~ + l (1.61) 

where R is the major radius of the shell, and /i is the internal inductance of the 
plasma column. Formally, according to eq. (1.61), the plasma starts to touch the 
wall (.i = b - a) for 

2Rib - ln(bla) 

(3J 
1 - alb f. 1 

------- - .! + -
1 + alb 2 2 

(1.62) 

In fact, whether the plasma touches the wall or not depends on the method by 
which pressure is increased. If the fluxes are conserved in the process, the 
poloidal flux between the plasma and the wall must be conserved. This prevents 
the contact between the plasma and the wall so that equilibrium is possible at 
any pressure. Then the current should be raised and, as a result, (3J determining 
the position of the column in the shell will be limited by - Rib despite the in
crease in the total (3. After violation of the frozenness conditions the total cur
rent starts to decline (we assume that a high pressure is maintained) tending to 
the stationary value - 1ra2u1e. The value of (3J starts to increase and the plasma 
column will be displaced toward the shell with its cross section matching its 
shape to that of the shell (see Fig. l.lOb). The loops of the field lines of the 
poloidal field enter the plasma during this process, clearing the vacuum region. 
At a certain moment the external surface of the plasma touches the wall and the 
shape of the column cross section becomes close to the segment. The poloidal 
field along the "straight" part of the segment is zero and the pressure gradient is 
compensated owing to the interaction between the longitudinal field B, and the 
poloidal current; this is similar to the confinement of the currentless plasma with 
a limiter. On the external part of the column both the longitudinal field and the 
poloidal field contribute to confinement. 

There is no poloidal field in the vacuum cavity between the plasma boundary 
and the shell. We may say that this cavity is an analogue of the x point of the 
separatrix, which appeared when the equilibrium was maintained by the external 
maintaining fields. In other words, though the hyperbolic magnetic axis does not 
penetrate inside the shell, the x point of the separatrix spreads out to fill the en
tire space between the plasma and the shell. 
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After touching the wall the plasma starts to be stripped off from the external 
magnetic surfaces until the stationary equilibrium is established for reduced col
umn dimensions. In this case, depending on the current and pressure distribu
tions, the transition to the stationary state or even the disappearance of the col
umn can be unrelated to the field diffusion processes and occur on the inertial 
time scale (the equilibrium instability). 

It should be noted that, though we have employed here the concepts based on 
the equation of evolution up to the critical state when the poloidal field vanishes, 
it is still unclear how to describe evolution of the transitional state between the 
configurations with different topologies. For instance, we do not know how the 
configuration would be changed if certain factors did not result in the reduction 
of pressure on the magnetic surfaces touching the wall of the shell. 

1.5. Methods for Solving 
the Evolution Problems 

The recent interest to the problems of equilibrium evolution was stimulated by 
the work on tokamaks with noncircular cross sections and, especially, high
pressure configurations. The first results have been reported and solution 
methods are being developed. 

First, let us consider the process of solution of the simplest one-dimensional 
problem in which evolution is described only by two equations (1.23) and (1.24). 
Even in this case the iterative method must be used owing to the non-linearity of 
the problem. The fields B, and B., the plasma pressure p and the derivative 
a~;at of the longitudinal flux entering into eq. (1.23) are taken with each 
previous step in time or iteration, while eq. (1.23) is regarded as a linear diffu
sion equation for determination of the poloidal flux Y: 

ay<••u + (.!!!._ a~ )'") = _£__( B2 )'") ~ a a"t<••u _ (....!!!._ ap )<•l (1.63> 

at aB. at 411'cr1 W. aa aa cr.W. aa 

Here (n) denotes the iteration number. 
After eq. (1.63) with the given boundary conditions has been solved, for in

stance, by the predictor method, we can find the current distribution J1•+l) and 
the poloidal field distribution m·•l) which are used to determine the longitudinal 
field distribution m·•l) from eq. (1.24): 

r [ 411' ]'··ll (W.)"•l = (B?J<•+l) - J 411'p' + -;BJ. da (1.64) 

0 

Then the quantities entering into eq. (1.63) are corrected. This solution pro
cedure is repeated for eqs. (1.63) and (1.64) and when a sufficient accuracy is ob
tained, the following step in time is made. Such calculations for the plasma col
umn with a finite conductivity have been illustrated above (se Figs. 1. 7 and 1.8). 

In the two-dimensional configurations the averaged equations (1.40) and (1.41) 
determining the diffusion of the fluxes contain such coefficients which can be 
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L"alculated only from the known solution +(r, z) = +(a) of the two-dimensional 
equilibrium equation (1.32). Then we have 

(.Ji) =- ~ J. .!!!_ (1.65) 
4r2 j rBP 

( ~) = _ ;, ~ Bplll (1.66) 

( .Ji) '+' ~ dl - =-- (1.67) 
K33 4r2 rBP 

where +' = d+ Ida, and a is a specially chosen characteristic of the magnetic 
surfaces (see Sec. 1.2.). The integrals in the above equations are taken along the 
~:ontour of the meridional cross section of the magnetic surfaces. 

Numerous methods have been developed for solving various forms of 
eq. (1.32). For instance, in the analysis of the equilibrium with the shell the 
typical approach is to use the difference approximation of the differential 
operator in the equilibrium equation (1.32) [1.20-1.22]. However, a disadvant
age of this method is the need to match the difference net to the shell for which 
the boundary conditions are specified. Expansions in special functions providing 
for regularity of the solutions at infinity are used for simulation of equilibrium 
in external fields. For instance, the popular method suggested by Lackner [1.23] 
uses the spherical system of coordinates and expansion in the Legendre func
tions. The method of integral equations based on the Green's functions offers 
certain advantages as it is flexible enough to allow unified approach to the 
equilibrium problems both in the shell and in the external fields as well as 
various combinations of these problems (1.24). All methods employ a simple 
iteration procedure for solving the equilibrium equation 

ij2y<•+l) 1 a+<•+!) (}2'f"<•+l) 4r --- - --- + = _ _ .c. 4r2[r2p'(+<•>) 
ar r ar az2 c 

and a grid fixed in space. 

+ .i!_ . F (+<•>) • F' (+<•>)/411"2] 
c2 

(1.68) 

In the conventional approach to equilibrium analysis the functions p'(+") and 
/·l+) are assumed to be known. In the evolution problem the function F{+") (or 
/·la)) itself is determined by the evolution equations (1.40) and (1.41). Moreover, 
it is more natural to specify the pressure p as a function p(a) of the coordinate a 
which determines p(+") in only an implicit form. Since the right-hand side of the 
equilibrium equation (1.68) is now determined by the averaged evolution equa
l ion (1.40) and the averaged equilibrium equation (1.41), they must be solved at 
every iteration step. To do this, we have to add to the conventional procedure 
for solving the two-dimensional equation (1.68) a cumbersome procedure of 
searching for the magnetic surfaces, that is, the contours +(r, z) = const, corre-
sponding to the fixed grid in a and averaging eqs. (1.65)-(1.67) over them. The 
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Fig. 1.11. Calculation of the equilibrium of the con
figuration with frozen fluxes in the external fields using the expansions in 
toroidalfunctions(reportedbyN. V. Chudin);q = l + 24>/4>0,p = prf..l - 4>/4>o). 
(a) {3, = 0, R/1, = 3.7, 1/1, = 1.6, I 1 = 0.8, I 2 = -0.475. (b) {3, = 2.3, 
I 1 = 0.8,I2 = -0.743,R//, = 3.8,/4 //, = 1.65(/, = (R2 - R 1)12). 

need for frequent averaging distinguishes the methods of solving the two
dimensional equilibrium equation applied in the evolution problems. 

The most universal, though suboptimal, approach is to use the conventional 
methods for solving eq. (1.68) and to perform direct averaging over the magnetic 
surfaces using the values of "+' at the nodes of the fixed grid. This approach has 
been used in the Princeton PEST code [1.25] (though only for the stability prob
lems) and also in [1. 7] for calculating the successive states of the configurations 
with frozen fluxes. 

One of the authors of this paper together with N. V. Chudin employed a 
similar approach based on a fixed grid using the expansion of "t in toroidal func
tions for calculating the equilibrium with conserved fluxes but now in external 
fields. The coordinate a was the longitudinal magnetic flux and q varied along 
the plasma column from l at the magnetic axis to 3 at the plasma boundary. The 
pressure was assumed to be a linear function of the flux 4>, p = p0(1 - 4>/4>0). 

An external current I 2 producing principally the maintaining field perpendicular 
to the torus plane was chosen in the process of solution from the condition that 
two points selected in the equatorial plane be always in a common magnetic sur
face. This prevented displacement of the column as a whole with growing 
pressure and simulated the control of the plasma position. For the sake of 
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simplicity, no surface current was included. Figure 1.11 shows the calculated 
results for two pressures: {3J = 0, and {3J = 2.3. 

This approach based on the fixed grid still allows only a limited number of 
uveraging procedures. A natural approach in the equilibrium problems is to 
nnulyle the equilibrium itself in a moving grid corresponding to the coordinates 
u, II, and r (see Sec. 1.2) related to the magnetic surfaces. The sought functions 
in this case are, actually, the magnetic surface coordinates r(a, 0, r). In the case 
of axial symmetry it is convenient to take orthogonal a, 0, and ,!", that is, with 
Ru = 0. Since g,t = (artax') X (ar;axt) (see Appendix), we can write the or
thogonality condition in the form 

ar ar + az az = 0 
aa ao aa ao 

(1.69) 

or 

az I az __ _ ar I ar 
aa = a(a, 0) ao aa ao (1. 70) 

Here we have 

( ar)2 (az)2 
Ku = aa + aa ' (1. 71) 

Equation (1.70) together with the equilibrium equation (1.42) comprise a system 
of three equations for the unknown functions r(a, 8), z(a, 0) and a(a, 0) [1.26]: 

_! a az + _! ..!._ az = 0 (1. 72) 
aa aa aoaao 
..! a ar + ..! ..!._ ar = 0 
aa aa aoaao 

(1.73) 

~ ; ~= =- ~,2 ; [ (!:) 2 + (!:) 1 (c. r2p' + :~. ~) (1. 74) 

The boundary conditions for eqs. (1.72)-(1.74) are the condition of periodicity 
in 0 and the condition that the external magnetic surface coincide with the shell. 
We should specify an additional boundary condition for the value of a corres
ponding to the magnetic axis whose position in space is generally unknown. The 
common feature of all the methods using the natural coordinates is that the coef
ficients a(a, 0) of eqs. (1.72)-(1.74) vanish at the magnetic axis. Therefore, an 
equivalent boundary condition at the magnetic axis is the condition of regularity 
of the solution which, in particular, implicitly determines also the spatial position 
of the magnetic axis. This property of the equations in the natural coordinates 
leads to certain procedural difficulties, and the methods for solving eqs. 
(I. 72)-(1. 74) are still being developed. Figure 1.12 shows the first calculated 
results for straight plasma column with a noncircular cross section enclosed in an 
ideally conducting shell [1.26]. 
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(a) 

Fig. 1.12. Calculation of the equilibrium of the plasma 
in the shell using the natural coordinates [1.26]. (a) The shell with the elliptical cross 
section; the plasma-vacuum boundary is shown. (b) The shell with a segment
shaped cross section; plasma spreads to the shell. 

Along with further optimization of the calculation methods, the method of 
reversal of the variables is currently applied for simulation of some physical pro
cesses. Figure 1.13 shows the calculated results for the limiting magnetic con
figurations in the so-called two-stroke tokamak [1.27] in which the plasma col
umn is exhausted from the working chamber to the evacuated chamber. The 
calculation problem can be described as follows. We have an ideally conducting 
toroidal shell comprising two linked chambers (the cross section see in Fig. 1.13). 
The chamber which is closer to the symmetry axis is regarded as the working 
chamber in which the discharge occurs. After the reaction products or impurities 
have accumulated in this chamber the plasma column must be transferred to 
another chamber from which the plasma is pumped off. This can be done by us
ing the loss of equilibrium along the major radius in the working chamber with 
increasing parameters {3J = 2c2 l p dS! .fl, for instance, owing to a decrease in 
the plasma current J or the natural increase in the pressure during the ther
monuclear fusion reaction. When {3J exceeds the limiting value, equilibrium in the 
working chamber becomes impossible and the plasma column as a whole or in 

Fig. 1.13. The limiting equilibrium configurations for 
the tokamaks with different widths d of the channel between the working chamber 
and the evacuated chamber. The pressurep(~) = p0(~- ~)/(~0 - ~).where~. and 
~ 0 are the values of ~ at the plasma boundary and the magnetic axis; ~ 0 = l, 
~. = 0.65. At the shell wall~= 0. The safety factor q = 1. The plasma boundary is 
shown by the thick line and the orthogonal coordinates related to the magnetic sur
faces, by the thin lines. (a) f3j=87r(p}/(B2 )=2.0, p 0 =0.34, d/2r0 =0.3, r0 is 
the minor radius of the chamber. (b) f3j= 3.~. p 0 =0.40, d/2r0 = 0.25.(c) f3j= 4.1, 
p0 = 0.67, d/2r0 = 0.2. (d) f3j= 5.1,p0 = 5.l,p0 = 0.90, d/2r0 = 0.15. 
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Fig. 1.14. The limiting pressure profiles in the com
pact torus configuration for various bla ratios, 
p = C ( +di!B) --r, C = const. The plasma fills ellip
soids of revolution of the same volume. A auarter 
of the volume is shown. (a)bla = 113. (b)bla = 1/2. 
(c) bla = 1. (d) bla = 2. (e) bla= 3. (f) The 
pressure distribution (the dependence of p!pmax on 
r/rrruu) in the plane z = 0. 
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parts flows over the evacuated chamber. Figure 1.13 shows a series of limiting 
rquilibria corresponding to various sizes of the channel between the chambers. 
To describe the process of plasma evacuation we have to find the solution of the 
problems of variation in time taking into account the inertial terms. 

The method of reversal of the variables is also useful for solving the problem 
of the limiting pressure profile in the so-called compact toruses. These are the 
'ystems with closed magnetic surfaces in the absence of the longitudinal field: 
that is, toroidal z pinch devices, traps and 8 pinch devices with reversed field. A 
characteristic feature of such systems is that the field lines are closed. Therefore, 
a dangerous instability for them is the interchange mode (1.28]. The necessary 
criterion of stability for it is the inequality 

p' V" 
--S./'-

p V' 
(1. 75) 

where V' = fdi!B, and I' = 5/3. In accordance with this criterion there is a 
limiting pressure profile 

p = C/'l(fdi/B) (1.76) 

corresponding to the marginal stability. The constant C determines the current 
distribution in the configuration. To calculate the limiting pressure profile we 
have just to solve the equilibrium equation (1.32) in which F = 0 and p' is given 
by eq. (1.76) which yields an implicit dependence on the averaged characteristics 
of the magnetic configuration. Figure 1.14 illustrates calculation of the limiting 
pressure (1.76) by the method of reversal of variables for the toroidal configura
tions in which plasma has the shape of the ellipsoid of revolution. Note that the 
ratio Pmv/Pmin between the pressures at the plasma column axis and at the 
plasma boundary in these calculations was more than 100. 

The method based on eqs. (1.72)-(1.74) and using directly the coordinates a, 8 
and r is a general one and, in principle, it can be applied to multiply connected 
configurations; its clear advantage in comparison with the conventional method 
is the convenience of averaging over the magnetic surfaces. 

It should be borne in mind, however, that both of the above methods employ 
equations in partial derivatives, which are noticeably more difficult to solve than, 
for instance, the equilibrium equations (1.40) and (1.41) themselves or the one
dimensional transport equations. Therefore, it is natural to try to simplify the 
process of finding the two-dimensional equilibrium to make it no more difficult 
than the solution of other equations. Such a simplification is feasible because the 
equilibrium plasma configurations possess a fairly smooth system of magnetic 
surfaces which, in principle, can be described by simple approximation functions. 

Let us specify the shape of the magnetic surfaces analytically with several para
meters. Then the calculation of the metric coefficients and averaging procedures 
are performed explicitly. The parameters are determined not from the exact dif
ferential equation but from its averaged modification - the ordinary differential 
equations for the moments. The number of such equations should correspond to 
the number of the selected parameters. 
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The use of the method of moments has been suggested earlier [1.29] for ob
taining the integral characteristics of the plasma column with a noncircular cross 
section. Following [1.29], a natural approach is to obtain the equation for the 
moments from the relationship 

~ J j.f ds = ~ B,./ dl (1. 77) 

where the integral on the left-hand side is taken over the meridional cross section 
of the magnetic surface and the integral on the right is taken over the contour of 
this cross section. The function f(r, z) is the flux of an arbitrary noncircuital 
field and satisfies the equation 

div V/ = 0 
fl 

for instance, / 0 = 1, / 1 = fl, / 2 = r' - 4flz2, and so on. 

(1. 78) 

Writing down eq. (1.77) in the coordinates a and 8, using eqs. (1.34)-(1.37) 
and differentiating eq. (1.77) with respect to a, we obtain the equation for the 
moments 

_.i!_ FF 1 ( J • .Ji.) -4r2 • c · p 1 (!JVg) = ~ · Y 1 .!!.._ (/• g22 Y 1
) (1.79) 

c g33 k 4r da .Ji 

When k = 0, eq. (1.79) reduces to the averaged equilibrium equation (1.41). 
Using eq. (1.41) to eliminate the function FF 1 from eq. (1.79), we obtain the 
equation describing the geometry of the magnetic configuration: 

Let us apply the method of moments for calculating the evolution of the con
figuration with a high fJ. Assume that the magnetic surfaces are toruses with cir
cular cross sections. This assumption is valid up to the pressures of the order of 
{3 - a!Rq2. The equation of the magnetic surfaces has the simple form: 

r = R - .:1(a) + a cos 8, z = a sin 8 (1.81) 

Here the displacement .:1(a) is the only parameter of the configuration. The 
metrics can be easily found: 

g11 =1-2.:1 1 cos8+.:1 12, g22 =a2 

(1.82) 
g12 = a.:1 1 sin8, .Ji = ar(l - .:1 I cos 8), g33 = fl 

Ignoring the small corrections of the order of aiR, we obtain the following 
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q q 

(a) (b) (c) 

Fig. 1.15. Calculation of the evolution of a model with 
the circular magnetic surfaces and finite conductivity (results obtained by the 
authors of this paper); a0/ R -c 1, u1 = const. (a) The initial state, t = -0, 
{31 = 0, q = const, j. = const, (b)· High-pressure configuration, t = +0, 
131,1 = l.O(R/a0),withfluxconservation,q = const,/31,1 !!!!! 2c2fpdS/(u17ra5£)2.(c) 
The stationary configuration, t = 2.4r sk. The pressure level, {3 1,1 = l.OR I a0 made 
possible the stationary field distribution. 

equation for .:1: 

-8r2 ·-·p =J2a~+J2 --1 ~--J2 c2 a4 1 - .:12/2 (2aJ ) a 
4r R~ J R 

(1.83) 

Here ~ = -2.:1/(1 + v1 - .:1 2). For small .:1 eq. (1.83) reduces to the well
known linear equation for the displacement. 

Thus, the evolution problem reduces to the solution of three ordinary differen
tial equations. Figures 1.15 and 1.16 illustrate the evolution of such configura-
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R 

(a) (b) 

Fig. 1.16. Calculation of the evolution for a model with 
circular magnetic surfaces and a higher pressure, a0/R -c u1 = const. (a) The initial 
state, t = -0, fJ 1 = 0, q = const j. = const. (b) The high-pressure equilibrium, 
t = + 0, fJ 1 = 1.SR!a0, watch frozen fluxes, q = const. (c) The equilibrium at the 
moment t 0: 0.4T.t when the poloidal field on the inner surface of the torus is zero. 
The pressure level does not allow a stationary configuration to be established and 
for t > 0.4.t the configuration must decay. 

tion. At the initial moment the pressure is increased without changing the fluxes, 
and then relaxation occurs under conditions of finite conductivity. Depending on 
the pressure the plasma column either goes over to the stationary state (Fig. 1.15) 
or the stationary state cannot be reached owing to the appearance of the poloidal 
field on the inner surface of the torus after which the configurati~n should start 
to decay. 
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The method of moments have been used so far only for the simplest cases 
(torus with circular cross section, straight column with the elliptical cross section) 
in which the magnetic surfaces can be described with just one parameter. The 
use of additional two or three parameters will make this method sufficiently 
universal, fully retaining its advantages in the fast rate of calculations. In par
ticular, this approach will make it possible to take into account, in a natural 
way, the geometry of the configuration in simulation of the transport processes 
in the real devices. 

1.6 Mixing of Plasma Columns 

The above discussion was concerned with the equilibrium evolution whose 
characteristic time scale was the skin time Tsk = 7rua21c'l. In fact, the equilibrium 
evolution can be regarded as a wider concept since eqs. (1.1)-(1.3) and (1.10) are 
valid also for shorter characteristic times down to the inertial time Tin· The 
typical processes occurring in the intermediate characteristic times, Tin < t < Tsk• 

are the so-called processes of reconnection of the field lines resulting in variation 
of the topology of the magnetic configuration [1.30, 1.31]. The main features of 
such processes can be illustrated by the case of mixing of two plasma columns 
[1.32]. 

Let us consider two straight plasma columns of a small radius a carrying 
positive parallel currents /p1 in a strong longitudinal field (see Fig. 1.17). We have 
to apply respective transverse maintaining magnetic fields to compensate for the 
attraction between the columns and provide for the equilibrium. If these main
taining fields are removed the two columns will approach each other with the 
Alfven speeds until they touch and the magnetic surfaces are essentially deform
ed (see Fig. 1.18). This will result in generation of negative currents concentrated 
along the boundary between the plasma columns in the so-called neutral layer. 
At a certain moment these currents producing a repulsive force acting on the col
umns will be sufficiently large to compensate fully the attractive force acting be
tween the columns. Thus, an equilibrium will be established in the direction of 
the attractive force and a quasi-equilibrium configuration will be formed. The 
speed ".1 with which the columns approach each other will become lower than 
the Alfven speed, ".1 <C "A· 

Fig. 1.17. The process of mixing of two plasma col
umns into one. The fields have opposite directions in the shaded region. The thick 
lines show the positions of the current layers; the arrows indicate the direction of 
motion of the !'la.~ma. 
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Fig. 1.18. The structure of the equilibrium configura
tion in the vicinity of the neutral layer in the process of mixing of the plasma columns 
with parallel currents. The dashed line shows the arbitrary boundary of the neutral 
current layer. The arrow shows the direction of motion of the plasma during the 
process. The plus and minus signs indicate the directions of the current density. 

The negative current Is concentrated in a narrow layer with the thickness h and 
the width about 2a in a high-conductivity plasma is determined only by the 
equilibrium conditions and is approximately equal to the total current of one 
plasma column, Is '"' /pi· We can estimate the layer thickness h by equating the 
convective transfer of the magnetic flux with the speed ".~. to its diffusive spread
ing: 

a-t c2 a2-t 
p.l.-=----

an 411"11 an2 
(1.84) 

Here the derivatives are taken along the direction n perpendicular to the current
carrying layer. Equation ( 1. 84) yields 

Jl.l. c2 
-=--

h 411"11h2 

However, such configuration does not provide for the equilibrium along the 
neutral layer and the plasma spread in this direction under the effect of the force 
(1/c)/sfln· To estimate the speed of spreading "· (where T is the direction along 
the layer) we have to equate the inertia force e,v, = QP21a and the Lorentz force 
(1/c)(lslha)Bn. The quantity Bn is approximately equal to (hla)B. and B. is of 
the order of the field of the current, 2/p1/ca. Hence, "· is of the order of the 
Alfven speed "A calculated from the field of the plasma current: 

Jl = Jl = 8 1 n = m,n (1.85) r A _. 2 • "' 
""'--a e 

The continuity condition for the plasma flux div v = 0 due to the frozenness 
of the longitudinal field yields 

Using eq. (1.84), we obtain the layer thickness 

h = ../CZa/(411"1111 A) 

(1.86) 

(1.87) 
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and the time of complete mixing of the plasma columns 

t = a/v .l = VT5ka/vA (1.88) 

We see that the time of the process ~T,kTin lies between the skin time and the 
inertial time. 

It can be easily seen that in the above process and in the similar processes 
there exists a large-scale equilibrium of the plasma configuration. Equilibrium is 
lacking only in the thin neutral layer where the plasma inertia plays a significant 
part. Using the fact that the thickness of this layer, h, is small, we can employ a 
simplified two-dimensional treatment of these processes and obtain in this way 
some effective boundary conditions for the quasi-equilibrium problem of the 
evolution of such configurations. 

1. 7 Combination of tbe Evolution Problems 
with Simulation of tbe Transport Processes 

The philosophy of the above discussion rests entirely on the independence of 
the evolution of the equilibrium magnetic configuration with respect to the 
transport processes in the plasma, as noted in [1.9]. Therefore, we have taken 
from the whole system of transport equations only such rough characteristics as 
the pressure and the longitudinal conductivity. In a sense, this independence of 
the evolution problems from the transport phenomena is reciprocal since the in
determinacy of the transport coefficients and, in some cases, the generally deter
mined losses are much greater than the corrections due to the configuration 
geometry varying with time. Therefore, it is a quite justified approach to employ 
the one-dimensional cylindrically symmetric model of the plasma column for 
simulation of the transport phenomena. At the same time, in some cases it 
would be useful to take into consideration simultaneously the equilibrium evolu
tion and the transport processes in view of the noticeable recent progress in the 
understanding of the transport phenomena and the experiments to be carried out 
in the nearest future for obtaining the highest possible pressures in the tokamaks. 
Therefore, we present here a brief scheme of such approach without going into 
details. 

The evolution equations (1.40) and the averaged equilibrium equation and 
(1.41) determining the evolution of the magnetic fluxes have already been written 
in the form suitable for this approach. We have to add to them the two-dimen
sional equilibrium equation (1.32) or (1.42) for determining the configuration 
geometry. Proceeding from the discussion of Sec. 1.5, we can expect that, owing 
to the improvement of the methods for the analysis of the equilibrium, this addi
tion will be actually reduced to one or several ordinary differential equations 
(the method of moments). The system of the transport equations will consist of 
the conventional averaged equations of continuity and heat conduction, whose 
form is somewhat modified owing to the fact that the system of the natural coor
dinates a, (} and r is curvilinear and moving in space: 

Dn a - +- nv = r 
Dt av 

(1.89) 
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3 (D1i ar) av aqi . 3m n 
-ni --+v- +ni1j-+- = Qf.+-~(T. -TJ 
2 Dt av av av M Te e 

(1.90) 

3 (DTe aT) av aqe 3m n 
-ne --+v- +neTe-+- = QH <fl> lu,--~(Te-Ti) 
2 Dt av av av M T 

(1.91) 

The densities ni and ne and the temperatures Ti and Te are the surface functions, 
that is, n = n(a, t). The quantities V and Qi, e are the "radial" contravariant 
components of the velocity and the heat fluxes averaged with the weight ..Jg over 
fJ and t: 

v • <"i v · Va) '· r• q • <"i q • Va) '· r (1.92) 

The quantities r, Q~ and Q~ are the additional sources of heat averaged over the 
magnetic surfaces: 

1 
r=-~-

<"i> 
. 1 

Q~e = _..::....__ 
<"i> 

<<?;: e Vi>,, r 

The derivatives D/Dt and ataV are the operators 

1 a 
<"i> aa 

(1.93) 

(1.94) 

Here (aatat)r has the sense of the contravariant component of the velocity v. of 
the motion of the coordinate surface: 

aa I =- Va. Va 
at r 

We have to add to this system an equation describing the normal projection of 
the plasma volocity, for instance, the respective projection (1.8) of Ohm's law. 

Until now in our treatment the evolution equation (1.38) corresponded to the 
simplest form of the longitudinal projection of Ohm's law, J · B = u1 E · B. In 
the case of low collision frequency we should take into account other terms of 
generalized Ohm's law (1.9), too, namely, B · div r and R · B. The respective 
quantities averaged over the magnetic field line, (/) = (if di/Bpl(+ di/Bp), 
have been calculated in [1.33]: 

(R. B) =- 5·24 F~1n'(Te + Tj} - fJzliT~ - {J,nT(] · (1 -H) 
en u1 

- fJ4 (E • B) (1 - H) (1.95) 

(B · divi' ) 5.24. =- F[a1n'(Te + Tj} - az11T~ - a,nT(] · (1 - H) 
en 

+ a 4 <E • B) (1 - l·l) (1.96) 
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where 
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a1 = 1.153, 
a 2 = 0.383, 
a 3 = 0.175, 
at= 1.672, 

fjl = 0.513 
/j2 = 0.624 
fj3 = 0.09 
fjt = 0.362 

1/Br --:-r.::.=::;:::::;::::::::=;::~ ' ).d). 

( .J1 - ). I B I ) 
0 

(1.97) 

For a torus with a circular cross section and a small aspect ratio we have 
1 - H,. 1.48 .Ja/R. 

The resulting evolution equation for the case of low collision frequency has 
the form 

u•[l - (a•- fjJ (1- H)](~' a-. - ,., a~) 
at at 

+ 5~~4 F (Vg) C[(a1 + fjJ n '(Te + Tj) - (az + fj~nT~ 

- (a3 + fj~ nT{] (1 - H) = 4r(JF' - FJ') (1.98) 

We can see that Eq. (1.98) differs from Eq. (1.38) only in an additional factor 
and an additional term on the left-hand side, which provides for a simple way 
for including the neoclassical effects in the general scheme of the evolution 
problems. 

Cooclusloo 

In fact, the theory of evolution of the plasma equilibrium in toroidal systems 
has just made its frrst steps. This paper summarizes the emerging approaches to 
the solution of the simplest problem of the equilibrium evolution, essentially, 
without changing the connectedness of the system of magnetic surfaces. The fur
ther work in this field must include, in particular, the development of the code 
for transport phenomena taking into account the changing geometry of the 
system. However, it should be emphasized that the analysis of the evolution of 
configurations is needed primarily for maintaining the equilibrium conditions 
and controlling the shape and position of the plasma column, rather than for ac
curate determination of the energy balance related to the geometry of the system. 

The evolution of high-pressure configurations has a great importance for the 
reactor tokamaks. In this paper we have put forward only the qualitative. con
siderations on a possible evolution process and illustrated them with model 
calculations. As the increase of pressure in tokamaks is an important problem, 
the details of this evolution should be analyzed including the aspects related to 
the variation of the conftguration topology. 
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The reconstruction of the topology of the magnetic surfaces (namely, splitting 
into multiply connected regions or, on the contrary, amalgamation of split sys
tems into one) is a fairly general problem in the plasma physics. It has been 
discussed [1.4] in connection with the experiments performed in the Doublet 
device. The problem of mixing appears to be the most interesting one since this 
process has been estimated to lead to a noticeable liberation of the magnetic field 
energy and a heating of the plasma. This process can occur via various path
ways: 

1. The diffusion mechanism is realized with slow variation of the external con
ditions during the time llt > Tdif· In this case heating is not significant owing to 
its slow rate. 

2. In the opposite case llt <C Tdif and llt :s YTsk Tin, where Tsk = 7fu1a2/c2 and 
Tin ""' a!..j/P,!he + -yp/e is the inertial time. In this case (as in the case with 
llt :s Tin which is difficult to realize) a neutral layer (see Sec. 1.6) is formed in the 
course of the process. According to estimates, the energy liberated in the neutral 
current layer is comparable with the energy of the poloidal magnetic field in the 
plasma. This process attracts great attention because of its high power (due to the 
short duration). 

3. The adiabatic mechanism with YTsk Tin < llt < Tsk· The problem of adia
batic evolution has been analyzed by Grad et al. [1.3, 1.4]. Since the process in
volves a change of the topology, that is, it is irreversible while the losses are 
small owing to the adiabaticity, we encounter the problem of the energy 
dissipated in the plasma. 

The processes of adiabatic and diffusive mixing and splitting are closely relatecl 
to the nonlinear development of the helical tearing instability. Both processes in
volve changes of the topology of the system of magnetic surfaces and are, essen
tially, inertialess. Therefore, they can be treated within the framework of the 
theory of evolution of the equilibrium. 

The problems discussed for tokamaks are wholly relevant for tne stellarator
type systems. The analysis of the evolution problems for such systems will yield 
information on the limiting pressures, generation of the longitudinal current, and 
so on. Practically nothing has been done in this field yet. 

Appendix 

It is reasonable to describe the three-dimensional magnetohydrodynamic equi
libria consistently using the coordinate system a, 0 and t, whose coordinate sur
faces a = const coincide with the magnetic surfaces and the cyclic coordinates (0 
along the minor circuit of the torus and r along the major circuit) are chosen in 
a special way. The coordinates are not orthogonal. Below we present the relevant 
data on the curvilinear coordinates for those readers who have an insufficient 
knowledge of them. 

a) Basis 

The curvilinear coordinates a = x1, 0 = x2 and t = .x3 can be defined either 
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by the transformation 

r = r(.x-1, x2, x3) 

or by the equation of the coordinate surfaces 

x'(r) = const 

(l.A.1) 

(l.A.2) 

Accordingly, we can introduce two systems of the basis and supplementary vec
tors. The basis vectors (with subscripts) 

e, = ar;ax' (l.A.3) 

give the direction of the variation of coordinates x' in accordance with the ex
pression for the oriented element of length 

dl=~dx' 
ax' 

(l.A.4) 

(summation is implied over the superscript i repeated twice). Thus, vectors e2 and 
e3 are tangent to the coordinate surface x1 = const, and so on. 

The supplementary vectors (with the superscript) 

ek = vxk (l.A.5) 

by definition are directed along the normals to the respective coordinate surfaces 
x" = const. Thus, vector e1 is orthogonal to vectors e2, e3, and so on. 

Accordingly, vector e1 which is tangent to the line of intersection of the sur
faces x2 = const and x3 = const is orthogonal to the vectors e2 and e3• There
fore, we can write 

e1 = c1 [e2 x e3], e2 = c2 [e3 x e1], e3 = c3 [e1 x e2] 

e1 = c1 [e2 x e3], e2 = c2 [e3 x e1], e3 = c3 [e1 X e2] 
(l.A.6) 

Note that the expression for the increment of any scalar function 

di(J = VI(J • dl = ( ai(J VxA) . (~ dx') = ~ e'eAdx' 
axA ax' axA 

(l.A.7) 

yields 

e, 'eA = c5r (l.A.S) 

Hence, we can easily obtain 

1 1 1 
c1 = Cz = c3 = - = - = - = .JK (l.A.9) 

c1 c2 c3 

where 

.JK = e1 • ez • e3 = ---- (l.A.lO) 
e1 • ez • e3 

is, according to the definition of the vectors e, the Jacobian for the transforma· 
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tion r = r(x1, xZ, x3): 

(l.A.ll) 

b) The metric tensor. 

All the geometric properties of the coordinate system are determined by the 
expression for the squared element of length: 

dfl = K11.dx'dx" (l.A.I2) 

The coefficients g,. make up the fundamental metric tensor. The expression for 
dl yields 

The squared gradient is expressed in terms of another tensor g~>: 

(V 1P )2 = g~.• iJ.,o .E!f.. 
ax' a~ 

where 

(l.A.I3) 

(l.A.14) 

(l.A.IS) 

Denote the cofactors for the elements g,. and g~.• by G,. and G'\ respectively. 
Using eq. (l.A.3) for e, and eqs. (l.A.6) and (l.A.8) we can readily fmd 

g,. = gG'• (l.A.I6) 

Accordingly, using eq. (l.A.S) for e' we obtain 

r• =.!.a,. 
g 

(l.A.I7) 

Squaring ..Jg = e1 • e2 • e3 and using the rule of multiplication of determinants, 
we obtain 

I e1 • e1 e1 • ez e1 • e3 I I Ku Ku Kn I 
g = I ez • e1 ez • ez ez • e3 I = I Ku Kzz K23 I 

I e3 • el e3 • ez e3 • e3 I I Ku K32 Kn I 
that is, g = Det g,.. Similarly, squaring ( ..Jg)-1 

Det r• = ug. 

c) Vector components 

(l.A.I8) 

e1 • e2 • e3, we obtain 

Any physical vector A (the magnetic field strength B, the velocity v, etc.) can 
be expaJlded either in the basis vectors or in the supplementary vectors: 

A = A'e, = A,e' (l.A.l9) 

Here A, is the covariant projection and A' is the contravariant projection. 
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Using eq. (I.A.l8), we obtain 

A 1 = A · e1 = A · Vr 

ar 
A1 = A·e1 =A

iJxl 

The scalar product of two vectors is 

A · B = A1e1 · e"B. = A1B1 = A1lf 

The square of the vector length is 

IAI2 = A,.AI 

(l.A.20) 

(l.A.21) 

(l.A.22) 

The vector product of A = A1e1 +A~+ A,e3 'and B = B1e1 + B~ + B,e3 is 

[A x B]l = [AB] · e1 = (A,B3 - A,BJ [e2 x e3] · et = _l_ (A,B3 - A,B2) (l.A.23) 
..Ji 

Respectively, we have 

[A X BJt = [A X B) · e1 = (A2B3 - A3B2) [e2 X e,) · e1 = ..Ji (A2B3 - A3B2)(1.A.24) 

The expressions for other components of the vector product can be obtained by 
cyclic permutation of the subscripts and superscripts. 

If we substitute A = A.e" and A = A•e. into A1 = A ·eland A1 = A· e~o 
then we obtain the relationship between the contravariant and covariant com
ponents: 

AI= gi.A· (l.A.25) 

so that we have, for instance, 

IAI 2 =gi.A1A· = g•A,.A. (l.A.26) 

In the orthogonal system of coordinates we have 

IAiz = guA1A1 + gzzAZAZ + g,A3A3 = g11AtAt + g22AzAz + g33A,A, (l.A.27) 

Hence, we obtain the following expression for the "physical" components of the 
vector in terms of the contravariant and covariant components: 

Ar'ys = ..rg;;A1 = ..{gtrAt, (l.A.28) 

and so on. 

d) Differential operators 

To treat physical problems in the given coordinate system we need expressions 
for the widely used operators, such as V, div, curl and V2• These expressions can 
be written in different forms owing to the difference between the covariant and 
contravariant vector components but it is better to employ the simplest forms. 
For some operations the covariant vector representation is more convenient and 
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for other operations the contravariant representation is better. The expression 

V<P = ~Vx' • ~e' 
ax' ax' 

shows that the covariant components of the gradient just coincide with the 
derivatives in the respective coordinates: 

(l.A.29) 

The contravariant components are expressed in terms of a<Ptax' according to the 
general rules and have rather complicated forms. Therefore, the covariant 
respresentation is more suitable for writing down the components of a vector 
equations containing gradients. For instance, the first component of the 
equilibrium equation is 

Let us now apply the operator div to vector A = A'e,: 

div A = e, · VA 1 + A 1 div e, 

Since e' · VA' = aA•tax' and 

(l.A.JO) 

(l.A.31) 

dive1 = div../g[V.xZ X Vxl] = [V.xZ X Vxl]·V../g = [V.xZ x Vxl]· Vxl iJ../g = -1- a.Vg 
ax1 ..;g ax1 

we obtain 

divA = -1- ...!__ (../g A') 
..;g axt 

Now let us apply the operator curl to vector A 

curl A = [VA, x Vx'] 

Using the rule of vector multiplication, we obtain 

(curl A) 1 = _1_( aA 3 _ aA2 ) 

..;g a.xZ axl 

(l.A.32) 

A,Vx': 

(l.A.33) 

(l.A.34) 

Hence, according to the equation (411"/C)j = curl B, the contravariant com
ponents of the current density are expressed in terms of the covariant com
ponents of the magnetic field. 

Let us write down the expressions for the field components B' and the cur
rent density components j' in the syste!D of coordinates a, 8 and r, where a labels 
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the magnetic surfaces. The conditions 8 = curl A and (4?r)c)j 

8, = (o. _"+'a+ cn,;at, ~'(a)+ a.,;ae] 
2~~ 2~~ 

J' = (o. _ F'(a) + a,;at. J'(a) + a,;ae] 
2~~ 2~~ 

B,=[~-~~. J+ a/(), F+ a/()]_1_,4~ 
aa ae at 2~ c 

curl 8 yield 

(l.A.JS) 

(l.A.36) 

where 't' = 2~A 3, ~ = 2~A 2, etc. have the same meaning as in Sec. 1.2. The 
equation of equilibrium and magnetostatics have the form 

4?r2·c·p'~=-(F'+!;) (~'+:) +(J'+:) (Y'+!;) (l.A.37) 

4"(- "+a/()) =- !.u.( Y' +a.,) + .£n.(~' +a.,) (l.A.J8) 
c aa ~ at ~ ae 

4" (F + a/()) =- Kzz( "+'' + a.,) +!a(~' + en,) (l.A.39) 
c afJ ~ at ~ ae 

~(F + a/()) =-ln.( Y' + a.,) +ln.(~· +en,) 
c at ~ at ~ ae 

(l.A.40) 

and yeild, in particular, eqs. (1.35)-(1.37). The right-hand sides of 
eqs. (I.A.38)-(l.A.40) include the covariant components B, multiplied by 2~, and 
the function (2/c)tp has the meaning of the scalar potential of a noncircuital 
magnetic field. 

Using the circulations + E · dl along the contours a = const, t = const and 
a = const, (J = const, 

~ 1 a~ EzdfJ =- --, 
c at ~ 1 ay E,dt =- -

c at 
(l.A.41) 

we obtain the relationship between the electric field and the fluxes in the moving 
coordinate system a, 9, t: 

Ez = __ 1_ a~ _ a~ 
2"'c at afJ 

E, = __ 1_ a"+ _ a~ 
2?rc at at 

(l.A.42) 

where ~ is the scalar potential of the vector E. 
Now taking the expression u1E,B'~ = j'B,~ averaged over (J and t, where B, 

is found from eqs. (l.A.39) and (l.A.40), we obtain the evolution equation in 
the invariant form: 

~· aY _ 't'' a~= ~(JF' _ FJ') 
at at u• 

(l.A.43) 
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2. Some Problems of Hydromagnetic 
Instability of Plasma 

0. P. Pogutse, D. Sc. (Phys. and Math.), and 

E. I. Yurchenko, Cand. Sc. (Phys. and Math.) 

Introduction 

This paper reviews the current problems of the linear 
theory of hydromagnetic instability of the plasma. Though these studies have 
been carried out for more than 20 years, there still remain some unclear pro
blems which are of practical importance. Some of these problems are discussed 
in this review. We shall start with the large-scale and rapid instabilities and go 
over to smaller-scale and slow instabilities, that is, from the more dangerous to 
the less dangerous ones from the experimental viewpoint. 

The first section deals with the ideal kink instability of the toroidal column. 
The main effect of toroidality consists in deterioration of stability and ap
pearance of restrictions on permissible plasma pressure. The second section 
analyzes dissipation of the plasma outside the current channel and its contribu
tion to evolution of the kink disturbances. It is shown that the peripheral plasma 
has a stabilizing effect even if the plasma density is low. 

The flute oscillations can play the primary part if the kink instabilities have 
been suppressed. In this connection, the third section discusses the analytical 
criteria of plasma stability with respect to the balooning modes of the flute 
oscillations. The critical pressures are calculated for the tokamaks with the cir
cular and D-shaped cross sections of the plasma column. 

Similarly to the development of the tearing instability due to dissipation with 
stabilization of the ideal kink instability, suppression of the ideal flute oscilla
tions leaves dissipative flute modes which can develop starting from the zero 
pressure gradient. These threshold-free dissipative ballooning modes are analyzed 
in section four. 

This review aims primarily at presenting the physical meaning of the new 
results, and therefore the discussion is mainly qualitative. Some mathematical 
details are given in the Appendix and the reader is referred to the original papers 
for more detailed mathematics. 

2.1. Kink Instability of the 
Toroidal Plasma Column 

The kink instability of the cylindric plasma column was analyzed in detail by 
Shafranov [2.1]. Figure 2.1 shows the stability diagram (the oscillation spectrum) 
in the case of the uniform current. The oscillations are unstable for -y2 > 0 and 
stable for -y2 < 0. Different branches of the oscillations can be seen to intersect; 
for instance, the branches with m = 2 and m = 3 intersect at nq = 2. It can be 
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Fig. 2.1. Spectrum of oscillations of the cylindrical 
plasma column without shell. 

expected that when a toroidal perturbation is introduced, these crossovers disap
pear as is the case in the band structure of the electronic spectrum of solids, and 
the oscillation spectrum will have the form illustrated in Fig. 2.2. The oscillation 
spectrum will have gaps where oscillations cannot propagate, and the growth rate 
'Y2 will increase on the average in the instability region. 

Simple estimates indicate that the branch splitting is an effect proportional to 
e = aiR, that is, the inverse aspect ratio of the plasma column, rather than the 
quantity E2 which describes the frequency corrections outside the region of 
branch intersection. 

Now let us make quantitative computation of this effect. Consider a toroidal 
plasma column carrying uniform current of the radius a in the shell of the radius 
b. At first, we consider b > a and neglect the effect of the conducting wall on 
the oscillation spectrum, and then we shall analyze the results of its inclusion. 

To analyze the stability we shall make use of the energy principle. It can be 
shown that the expression for the energy principle can be considerably simplified 
in the case of plasma in a strong magnetic field (B~IBJ > 1) by replacing the 
vector function ~ (the plasma displacement from the equilibrium position) with 
the perturbation of the scalar potential~{) (see Appendix) [2.3]. We shall write the 
dependence of the potential IP on the variables Q, 8 and s in the form 

IP = IP(Q) I;t~<m9-ns/k) (2.1) 

m 

since under axial symmetry the harmonics in s are independent and the nth har
monic can be treated separately. Owing to toroidal curvature the harmonics in 8 
are linked. The potential energy Wand the kinetic energy Tin the given approx-
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Fig. 2.2. Spectrum of oscillations of the toroidal 
plasma column without shell. 

imation have the form 

QdQd8ds - ----tp +- .---tp [[ 1 ( 1 a a. v ) 2 1 ( a a. v )j 
4r Q iJ8 JJ8 4r aQ JJ8 

Vi+ V0 

__ 1_ atp dp ..!_ D(tp, liB') + _l_ D(tp B · VIII" tp)) 

QBo iJ8 dQ Q D(Q, 8) CQW D(Q, 8) ) 
(2.2) 

(2.3) 

The expressions for the potential and kinetic energies are written in fact in the 
cylindrical approximation, that is the metric tensor coefficients are replaced with 
their values for the cylinder. Toroidality is taken into account only in the term 
describing drift in the nonuniform magnetic field (the coefficient at dp01dQ) and 
in the coefficient at the longitudinal current. The operator (B · VII") = (WI II") 
(a!iJ8-inq) acting along the field line yields a quantity independent of 8 for any 
harmonic (B · V/11") = (ilqR) (m - nq). Expression (2.2) for the potential 
energy can be readily interpreted as follows. The first term in the brackets is the 
energy of the magnetic field in a vacuum and in the plasma. It should be noted 
that all the field components are proportional to the operator B · VI II". = k 1• 

Thus, near the resonance surfaces, where k1 = 0, the magnetic field does not af
fect the stability. The second term is proportional to dp/de; it is of the order of 
e, that is, it appears only in the toroidal geometry and describes "squeezing out" 
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of the kink instability (it increases with increasing {3J). The last term describes the 
effect of the current, and the toroidal corrections to it are purely geometric in 
character. 

The integral of the magnetic field energy is taken both in plasma and in a 
vacuum since, according to Shafranov [2.1], we formally introduced the "dis
plasement" in a vacuum by the relation 8 = curl (f x 8]. Of course, only the 
combination [f x 8], which is the vector potential, has the physical meaning, 
rather than each term separately. However, tbis displacement is very convenient 
since it allows us to write the field in a vacuum in the same form as in plasma. 
Shafranov [2.1] took the magnetic field in a vacuum as 8 in the vacuum region. 
As shown by the expression for the fields, a more convenient form of B is such 
that the operator k1 yields a constant when acting on the Fourier components. 
This can be obtained just by continuing the field B' into a vacuum so that the 
combination (B · V 1 ll")IP = i [(B' //l")m - (n/R)]IP be constant, that is B' - /l". 
The calculations are considerably simplified in this way. Note that this fictitious 
magnetic field is not related at all to the magnetic field in a vacuum. 

A well-known fact is that to calculate the first-order corrections to the energy 
we have to know the eigenfunctions in the zero approximation. We shall take the 
eigenfunctions Q'"exp(im8) and Q-'"exp(im8) as the zero-approximation eigenfunc
tions. Since we deal with degenerate levels, we must take a combination of the 
neighbouring eigenfunctions ~ .. and ~ ... 1• We shall use the real combination 

~ = c,.exp(im8) + c,..1exp [i(m + 1)8] + c.c (2.4) 

where c,. - Q'" in the inner region and c ... - Q-'" in a vacuum. 
Calculations indicate that the terms of the order of E are due only to the terms 

proportional to dp01dQ and J, and that the current term has a purely geometric 
effect since it is related only to the dependence of /l" on 8. 

A function of the type of (2.4) should be substituted into the variational rela
tionship c5j(T - W)dt = 0. Averaging over 8 and sand integration over Q yield 
a functional depending on c .. , c!, c ... 11 c!.1• After variation inc! and c!.1 we ob
tain the following system of equation for determining c,. and c,..1: 

Here 

h&- 2k .. + 2k!.) C .. + E(JJ. + 1) c ... 1 = 0 (2.5) 

C"Y&- 2k .. +t + 2k!..t)C ... t + E(~J+ 1).....!!!._ Cm = 0 (2.6) 
m+1 

"Yza2 BJ "Y& = -, Cl = --, k,. = m - nq (2. 7) 
Cl 4..-Qo 

The condition of solubility of this system of equations is the following disper
sion relation: 

"Y& - 2k,. + 2k!, E(/3J + 1) 

E{PJ + 1) _m __ 
m + 1 

= 0 (2.8) 
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F"Jg. 2.3. Spectrum of oscillations of cylindrical plasma 
column with shell. 

When E - 0, eq. (2.8) is resolved into two independent equations for m and 
m + 1 modes. When E :1= 0, at the intersection point k ... = 0, k..,.1 = 1, and ·we 
have the maximum resolution of the branches 

'YI = ± E(/3J + 1) - ,--;;,- (2.9) 
v~ 

Far from the intersection point the effect of toroidality yields the corrections 
to 'YA which are of the .second order of smallness in ~ and since the terms of this 
order have been ignored, we cannot find a quantitative estimate of this effect 
outside the splitting region. 

Figure 2.2 gives a qualitative illustration of resolution. 
It is significant that the splitting value grows with increasing ~J· Note that the 

term proportional to ~J in eq. (2.9) is related to the term dp01dQ in the expres
sion (2.4) for the potential energy W, while the unity in the parentheses is due to 
the current term. The effects caused by the dependence of the resolution mag
nitude on the plasma density will be demonstrated below for the case of the 
toroidal plasma column in the ideally conducting shell. 

In this case the stability diagram of the cylindrical plasma column contains the 
intervals in nq (the stability gaps, see Fig. 2.3), where oscillations are not 
amplified. The modern tokamaks are known to operate just in these stability 
gaps. 

When we include toroidality, the degeneracy is again eliminated but now in the 
real region hi < 0), as can be seen in Fig. 2.4. The respective effects are 
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Fig. 2.4. Spectrum of oscillations of toroidal plasma 
column with shell. 

described by the following dispersion equation: 

'Y~ - 2k... + 2k~ 
1 - (a/b)Z"' 

m 
E({j, + 1) ---

m + 1 

=0 (2.10) 

Equation (2.10) differs from eq. (2.8) in that its stabilizing terms contain 
denominators which are due to the inclusion of the shell; the eigenfunctions in the 
vacuumregiona <.P < bnowhavetheformp-m- pm/b2m,ratherthanp-m.Note 
that the stabilizing effect of the shell in the off-diagonal terms is insignificant in 
this approximation. 

Assuming that the widt.h of the gap is sufficiently small, we find the following 
approximate solution of the dispersion equation (2.10): 

m (a ) 2m+2 'Yfi = ± ({3J+ 1)E --- -
m+1 b (2.11) 

Thus, the stability gaps are closed with increasing {3J. The condition of stable 
operation of the tokamak in the mth gap has the form 

1 ~+1 (a) 2m+2 f3J :S - -- - - 1 
t: m b 

(2.12) 
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If the plasma pressure is lower than the critical value given by criterion (2.12), 
the plasma column is stable for the declining current proflle in the column cross 
section. If the plasma pressure is higher than the critical value, the stability 
depends on the form of the current proflle. Sharper proflles are known to have a 
stabilizing effect, particularly on the high modes [2.1]. 

Note that though the effect of gap closure in the case of nonuniform current 
density must be calculated for specific conditions, this model readily yields its 
qualitative explanation. 

2.2. Kink Instability of 
Nonideally Conducting Plasma 

The theory of the kink instability of the current-carrying plasma column in the 
longitudinal magnetic field has been extensively developed for the following two 
limiting cases. In the frrst case the vacuum region with the zero conductivity is 
outside the current-carrying plasma (the case of free boundary) [2.1]; in the sec
ond case the high-conductivity plasma is outside the current channel (the case of 
fixed boundary-the tearing mode) [2.4]. For the plasma with the free boundary 
the growth rate of the kink instability is of the order of 'Yb - c,!a, where c, is 
the Afven velocity found from the current field, and a is the radius of the cur
rent channel. In the case of the tearing instability the growth rate is much lower 
than 'Yo : 'Yt = 'Yb(r,/rJ315 since r,/r, ~ 1, where r, and r, are the Alfven time 
and the skin time, respectively. Thus, the kink instability can continuously go 
over to the tearing instability in a wide interval of the parameters of the plasma 
outside the current channel. This continuous transition has not been identified 
before. 

However, this is just the situation which is the most interesting one for ex
perimental work. In modem tokamaks the temperature of the current channel is 
sufficiently high, so that the central part of the plasma column: can easily be 
regarded as ideally conducting. It is well known that if the ideally conducting 
plasma extends to the shell, then the theory does not permit evolution of the 
kink instability (with the exception of the so-called internal mode with m = 1) 
but it is usually found in experiments. A qualitative explanation of this fact is 
well known and sufficiently simple. 

The kink instability occurs when the resonance surface [q(Qo) = min, where q 
is the safety coefficient and m and n are integers] is at the periphery of the 
plasma column, where the plasma density is small and the conductivity is lower 
(owing to the lower temperature). In a first approximation this plasma can be 
regarded as a vacuum, the field lines are not frozen in and the kink instability 
can develop. However, this explanation does not answer the question on the 
parameters of plasma which would allow us to treat the plasma as a vacuum. 
Moreover, the primary question remains unanswered: what growth rate of the 
kink instability can be expected under real experimental conditions? 

The modem theory of plasma of fmite conductivity, namely the theory of 
the tearing instability, cannot provide answers to these questions since it is 
asymptotic in the parameter r,/r, and the growth rate in it is assumed to be 
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much lower than the growth rate of the kink instability. But we wish to find the 
parameters of the plasma column periphery for which the growth rate of the 
kink instability starts to differ from the growth rate of the kink instability, as 
well as the respective difference. 

To analyze this problem we shall treat here a simple analytic model allowing 
us to trace the continuous transition from the kink instability to the tearing in
stability. 

We think that, despite its simplicity, this model is sufficiently realistic and 
reflects the main features of experiments. 

If the current field B, is much lower than the longitudinal field B0 and the 
plasma pressure {3 = 81rp/B~ is low, the equations of two-fluid hydrodynamics 
and the Maxwell equations can be expanded in the powers of the small 
parameters B,IB0• This results in a considerable simplification of the equations, 
since we totally eliminate the magnetoacoustic oscillations. This procedure is 
described in detail in [2.5], and a more rigorous treatment is given in [2.6]. The 
simplified equations have the most symmetric form being written for the electric 
field potential IP and the longitudinal component of the vector potential A: 

wc2 div.L(QoV.d) + _!!!__djO A= ik 1a(k 1~P- ~A\ (2.13) 
B~ QBo de c l 

~.LA= i ~ a(kiiP-; A) (2.14) 

Here we have used the cylindrical geometry of the plasma column with the iden
tical conditions at the ends (L = 21rR) and the equilibrium magnetic field of the 
form B (0, B8(p), B0). The perturbed quantities are written in the form IP = 
IP (p) exp (-iwt + im{j +ins/R), Po is the unperturbed plasma density, 
111 = (c/41r) (1/Q) (dldQ) QB,, a is the plasma conductivity, ~.L and V .L are the 
operators acting only on the transverse coordinates [for instance, ~ .L = (1! Q) 
((J!iJQ) Q(iJ!iJQ) - (m2/Q 2), k 1 = k · BIB = (B,!B0) (l!Q)(m - nq) is the pro
jection of the wave vector on the magnetic field, and q(e) = eB0/RB, is the 
safety factor. 

Equations (2.13) and (2.14) comprise a system of two second-order equations 
with variable coefficients, which is difficult to solve in the general form. Let us 
recall briefly how we can go over to the limiting case of the kink instability and 
the tearing instability in eqs. (2.13) and (2.14). First, let us write down a relation
ship between A and ~P, which does not contain the conductivity. Expressing the 
combination k 11P - wAle from eq. (2.14) and substituting the result in 
eq. (2.13), we obtain 
wcZ. m d)11 c 
- d1v .L(e0V .LIP)+-- --A =- kl~lA (2.15) 
B~ eBo de 4r 

Take the cylindrical plasma column with distributed current, high-temperature 
central region and conductivity declining towards the periphery of the current 
channel. 
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Let us analyze the following simple model to trace the continuous transition 
from the kink instability to the tearing instability. Assume that a uniform current 
flows in the central part of radius a of the plasma column and the conductivity 
in this region is infinite. When Q > a, the current density is zero and the plasma 
has an arbitrary conductivity. 

Generally, no analytic solution for the arbitrary conductivity outside the cur
rent channel can be obtained even in this model. But if we introduce another 
small parameter, namely, the ratio between the concentration outside the current 
channel and the concentration in the current channel, If = nelni, proceeding 
from the experimental observation that the peripheral concentration of plasma is 
lower than the concentration at the centre, then we can obtain an analytical solu
tion for an arbitrary conductivity at the plasma periphery for reasonable If 
values. 

Within the framework of this model we can also introduce the conducting wall 
at Q = b but this will merely give us an additional parameter and not make any 
essential difference, and since the effect of the wall has been analyzed in detail in 
[2.1], we shall ignore the wall for the sake of simplicity. 

Thus, at Q < a we shall analyze the equations for the ideal plasma and at 
Q > a, the equations for fmite conductivity using the procedures developed in 
the studies of tearing instability [2.4]. The inclusion of the small parameter If 
allows us always to make the singular region, where eq. (2.17) is not valid, suffi
ciently narrow so that the theory remains applicable. 

Now let us write down the equations for our model and solve them. For 
Q < a eq. (2.14) implies that in this region (the superscript "i" will denote the 
values of all parameters in this region) the condition of frozenness relates <P and 
A: 

tp1 = ...!!!-- Ai (2.19) 
k'1c 

It should be noted that for J-o = const we have k11 = const. Now, substituting tp1 

into eq. (2.15), we obtain the equation for Ai; 

( 1 - ~) .:1 Ai = 0 (2.20) 
k ~(c~)2 .l 

Here (ci..t)2 = Bl!4w-Q0 and the fact that dJ"Ofdr = 0 has been used. Below it will 
be shown that w * k 1cA, and therefore eq. (2.20) can be reduced to .:1.LA1= 0. 
In the region Q > a, that is, outside the current channel, all the parameters will 
be denoted by the superscript "e". Assuming that Q0 and u are cpnstant, we ob
tain in this region 

(2.21) 

(2.22) 
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It is well known [2.4] that the kink instability can develop when the singularity 
k1(e0) = 0 is at the periphery of the plasma column; then in the whole region of 
high conductivity where u - oo we can assume 

(2.16) 

which follows from eqs. (2.13) and (2.14). This is just the condition of frozenness 
of the plasma E + (1/c) [v x 8] = 0 rewritten in the terms of IP and A: 

Substituting IP = (w!k1c)A into eq. (2.15), we obtain the equation for the high
conductivity part of the plasma column: 

weD.( w~ mdj0 c -d1v.L eoV.L -A +----A= -k1..:1.LA m kf e~ ~ ~ 
(2.17) 

In the peripheral plasma region the conductivity is small, u - 0, and A can 
be described by the simple equation 

..:i.LA = 0 (2.18) 

Equations (2.17) and (2.18) describe evolution of the kink instability of the 
plasma column carrying current in a strong longitudinal magnetic field. 

When we analyze the helical instability of plasma with the fixed boundary, 
that is, the tearing instability, we assume that the conductivity is high in the en
tire plasma region. Dissipation proves to be significant only in the vicinity of the 
singularity k1(e0) = 0 and the plasma density in this vicinity is typically assumed 
not to differ significantly from the plasma density at the centre of the current 
channel. 

Under such conditions we should employ eq. (2.17) in the entire region with 
the exception of the vicinity of the point eo and assume w2 =- 0. In the vicinity 
of the singularity high conductivity [as it follows from eq. (2.13)] is compensated 
with k 1 - 0, and here we have to solve the full system of equations (2.13) and 
(2.14). Since the width of the region where eq. (2.17) is inapplicable tends to 
zero with increasing u and is much smaller than the characteristic plasma size, we 
can regard the macroscopic quantities as being constant in the vicinity of Qo· 
This results in such a simplification of the equations that the solution [2.4] for 
the singular region becomes universal, and the dependence on the specific 
distribution types is expressed only via the solution of eq. (2.17) for the region 
outside of the singularity. 

The solution for the tearing mode corresponds for almost totally frozen 
plasma [almost everywhere IP = (w/k1c)A] and the growth rate for it is, natural
ly, much smaller than in the case when the singularity is in a vacuum and the 
condition of frozenness is absent. 

Thus, if we gradually decrease conductivity near the singularity, this leads to 
the transition to the kink instability. But we cannot employ the solution for the 
tearing mode in the case of this transition since the width of the singular region 
increases with decreasing conductivity, and we can no longer distinguish between 
the inner and outer regions, while the solution in the vicinity of the singularity 
loses its universality. 
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Fig. 2.5. Dimensionless growth rate as a function of nq 
for various plasma temperatures at the column periphery. 

in the singular region Qo - {) < Q < Qo + 6. This difference is 

.:1 = 2 m c2 - 1 
Qo 11 - Cz [1 -(a/ Q0) 2"'ll 

(2.29) 

where 

In contrast to the conventional tearing mode, we have retained here the terms of 
the order of -y2 since the resulting growth rates can be of the order of the growth 
rate of the kink instability,_ 'Ys - c,!a. 

Another relationship between .:1 and 'Y can be found from the solutions of 
eqs. (2.21) and (2.22) in the dissipative layer [2.4]. We obtain then 

.:1 = 4 m (Qol2mso)312 'Y"tijllt 

a (c,/a)112 -y31t 
(2.30) 

where s0 = c/wpe is the width of the collisionless skin. Equating eqs. (2.29) and 
(2.30), we obtain the dispersion equation for our model [2. 7]: 

'Yi = 2k., - 2k~ [ I +(Q.. )"'] 
1 + Q.. I - 1 k., 

m 

(2.31) 

Here 'Yo = -y.!c,, Q .. = (2-112 m-312) (Q0/a)512 lle31~314n(l/PI14), "o = Pale,, and 
lle = a2w~/ c2 is the number of electrons per unit length in the current channel. 
The plasma of finite conductivity and finite concentration around the current 
channel always has a stabilizing effect owing to frozenness of the magnetic field 
(the factor at k~ is smaller than unity). 
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We shall solve these equations using the tearing mode technique. In other words, 
we shall assume that the region of localization of the rapidly varying solution of 
the system of equations (2.21) and (2.22) is sufficiently small, so that we can re
tain only the linear term in the expansion of kj = (kf)' (e - e0). 

Equation (2.17) for the ideal plasma can be employed in the external region, 
with the exception of the narrow layer near the resonance point Qo and for a suf
ficiently low ratio If = n.lni eq. (2.17) is reduced simply to 

~.1 + A• = 0 (2.23) 

In the immediate vicinity of the point eo (where kj = (kj)' (e eo>; we shall 
estimate the width of this region below) we must use the entire system of equa
tions (2.21) and (2.22) with the replacement kj = (kj)' (Q - e0). 

Now we can easily write down the solutions. In the region e < a we have 

Ai = (Q/a)'" (2.24) 

The second solution is ignored owing to fmiteness of Ai at the zero, and ~i is 
related to Ai by ~i = wAi!ki1c. In the interval a < Q < Qo - o the solution of 
eq. (2.23) is A• (here o is the width of the region where dissipation is significant): 

A~ = c1 ( : y + c2 ( : Y'" (2.25) 

In the region Qo + o < Q < oo it is sufficient to include only the decreasing solu
tion 

Aj = C] (: Y'" (2.26) 

·In the entire nonresonance region, where dissipation can be ignored, we have 

~·= ~A• 
k7c 

At the boundary of the current channel at Q = a we have the condition of 
matching which follows from eq. (2.15) 

( wz ) dAi dA1 m C# 
1 - kj'~' dr - dr - 2 ~az ~ A = 0 (2.27) 

When we derived this condition, we used the fact that ;; = n.lni <C 1 and that 
Ai = Ai and ~i = ~·are continuous at the boundary of the current channel. Us
ing the matching condition (2.27) we can find the relationship between the coef
ficients in the solutions (2.24) and (2.25) and the difference between the 
logarithmic derivative at the boundary of the region of localization of the 
dissipative solution: 

~ = _!_ dA I Qo + 6 

A de Qo - 6 
(2.28) 

It is well known [2.4] that we need only this difference to determine the solution 
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m-1, T-50 m-2. T-50 m-3, T-50 

Fig. 2.6. Dimensionless growth rate as a function of nq 
for various ratios between the concentrations at periphery and at the centre of the 
plasma column. 

When the plasma concentration outside the current channel tends to zero, 
eq. (2.31) reduces to the dispersion equation for the kink instability. We can find 
the growth rate of the tearing instability from eq. (2.31), assuming 'Y~ - 0. 

The numerical solution of the dispersion equation (2.31) for the modes with 
m = 1, 2, 3 is shown in Figs. 2.5 and 2.6. The following values of the 
parameters were used in these calculations: a = 20 em, ni = 5 x 1013 cm-3, and 
J = 200 kA. The temperature is given in electron-volts. Figure 2.5 shows that 
when the temperature of the peripheral plasma is higher than 10 e V and the 
relative concentration is n = 0.1, the instability regions for the second and third 
modes narrow down (the first mode is unstable at any temperature), that is, if 
we take into account the peripheral plasma, the stability gaps appear. Figure 2.6 
shows these growth rates as functions of the relative plasma concentration at the 
column periphery. 

The calculated results. indicate that under real experimental conditions it is 
feasible to operate with low safety factor values q(a) :S 3 since the temperature 
at the periphery of the plasma column is of the order of 10 eV. Note that an in
crease in dimensions of the current channel is accompanied with a decrease in 
the instability growth rate and extension of the range of the stable values of q(a). 

2.3. Influence of the Ballooning Effects 
on the Plasma Stability (Flute Oscillations) 

Apart from the helical instability, in the plasma-carrying current in tokamaks 
there can develop the flute instability related to the curvature of the field lines. 

The theoretical treatment of this instability is, typically, started from higher 
modes (m ""' nq > 1). Initially, the aim of such a treatment was to obtain 
general results independent of specific equilibrium configurations. But recently 
the results of numerical calculations have shown that it is just the higher modes 
that are most unstable, so that this approach is not of only an academic interest. 
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Saydom [2.8] was the first to derive the necessary criterion of stability of the 
current-carrying plasma for the cylindrical geometry (in a sense, the limiting case 
for tokamaks for R - oc ); 

! sZ + 2p'Q > 0 
4 Bi 

(2.32) 

Here s' = q 'Q 1 q is the parameter describing the shear. 
It was clear, however, that to apply this criterion to torus we must alter it 

[2.6]. Firstly, when the cylinder is bent into a torus, this gives rise to an un
compensated force which is similar to the force expanding the car tire (clearly, 
this force increases with increasing plasma pressure and is a destabilizing factor). 
Secondly, a so-called magnetic well playing a stabilizing role is formed owing to 
the magnetic surfaces being pressed to the external contour [2.9]. 

Careful calculations of these effects for the tokamaks with circular magnetic 
surfaces yielded a somewhat unexpected result, namely, that the stabilization 
criterion converted into [2.10] 

1 2p'Q 
- $l + -- (1 - q2) > 0 
4 Bi 

(2.33) 

The terms responsible for the ballooning effect and the terms proportional to the 
pressure and corresponding to the magnetic well concelled out. And though this 
criterion was derived from the general geometric criterion of Mercier [2.11]; 
there was something wrong here. The attempts to include higher terms in the ex
pansion in curvature and pressure were unsuccessful in clarifying the situation. 

It should be recalled that the standard technique universally employed in that 
period took into account, apart from the basic mode with the number m, two 
neighbouring satellites with m + 1 and m - 1 which were regarded as small 
(this was assumed to be natural since the toroidal curvature was small). 

Criterion (2.33) indicates that when q(Q) > 1 the tokamak plasma is always 
stable with respect to the flute oscillations. The things had not been changed for 
a long time until the Prinston theorists [2.12] demonstrated by numerical calcula
tions that the plasma stability deteriorated with increasing pressure, though 
criterion (2.33) completely ignores this effect. Moreover, the computer calcula
tions gave such a mode structure for a moderate shear which had nothing in 
common with the theoretical predictions according to which the basic mode had 
to dominate and the other modes had to serve just as small additions. All the 
modes proved to occur equivalently and, moreover, to overlap. 

A significant new contribution to the theory of the flute instability based on a 
very simple primary idea was made in [2.13]. 

Let us consider the Fourier expansion of a certain function describing the 
plasma oscillations, for instance, the potential <P(Q, 9, s): 

<P = E .p..,(Q) ei(m9- ks/R) (2.34) 

For the sake of simplicity, we shall omit below the coordinate s with respect to 
which the tokamak is homogeneous. Assume that all harmonics in 9 behave 
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equivalently. Then we shall take 

IP .... (e) = IP.[(m - nq(Q)] (2.35) 

Here any harmonic can be obtained from a certain harmonic by simple displace
ment along the radius e. This can be easily seen if we replace q(e) with a linear 
function of e. q(e) = q'e. Then for the mode m we have m = nq' em and for 
the mode m + 1 we have m + 1 = nq'(em + .1e), that is, the next mode is 
displaced by .1e = 1/(nq') = emlnqs. 

When we substitute the potential (2.34) with the coefficients of the type of 
eq. (2.35) into the equation of the flute oscillations (see Appendix), we obtain a 
system of coupled equations for the functions !p.[m - nq(a)]. Since all these 
functions differ only in m which is equivalent to simple displacement along e, 
then the natural approach to solving this system of equations is to expand the 
functions IP· into the Fourier integral in [m - nq(e)]: 

00 

IP.[m - nq(e)J J F(y) e'l•-••lfll!.dy (2.36) 

-00 

Then we obtain the transformation found in [2.13]. Now we have a differential 
equation for the Fourier transform .F(y), which is easier to analyze than an in
finite system of coupled differential equations for !p.[m - nq(e)J. 

The method of equivalent harmonics makes possible the asymptotically correct 
(for nq - oo) analysis of stability. This, naturally, leads to the question how to 
find an analytical criterion without using old approximate methods. 

To illustrate the method of equivalent harmonics and the analytic procedure 
for solving the resulting differential equation let us treat a simple model equation 
describing the flute oscillations in the toroidal plasma. A comparison with the 
exact equation (see Appendix) shows that the model equation, though it is 
relatively simple, describes the essential features of the real situation eliminating 
the complications due to the aspects of secondary significance. 

Let us illustrate in brief the derivation of the model equation. If we consider 
the boundary of the plasma stability, then practically all the information can be 
obtained from the equilibrium equation. 

1 
Vp =- U X 8] (2.37) 

c 

which yields L. = (c/B2) [8 x Vp]. The longitudinal current component j 1 can 
be found from the projection of (411"/C)j = curl 8 on B. In a low-pressure 
plasma the perturbed magnetic field is related only to the longitudinal compo
nent of the vector potential 8 = curl (Bofb)A 1 = - [(BofB) x VA 1] = 
- [b x V A1]. Then we have (411"/c)/ = - 4.4 1• Substitution of ] 1 and JJ. into 
div j = 0 yields 

(b · V).1J. 4c11" A 1 + c[B X Vp] · V * = 0 (2.38) 
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Another relation between jJ and A 1 follows from the longitudinal projection of 
eq. (2.37) (8 · Vp) = 0, that is, 8 · Vp0 + 8° · Vp = 0. If we take A 1 = (b · V)\1', 
then this equation can be integrated in the general form: ji = (dp01de)\l'. Substitut
ing this equation into eq. (2.38), we obtain 

(b · V).i.~.(b · V)\1' + c~[8° X VII']· V _!_ = 0 (2.39) 
de B~ 

If we had not assumed the frequency to be zero, we would obtain, instead of 
eq. (2.39) 

dp 1 
w2.111' + (b · V).i.~.(b · V)\1' + c~ [8° x VII']· V- = 0 

de B~ 
(2.40) 

Now it is quite clear that the first two terms describe the Alfven oscillations and the 
last term is due to the toroidal curvature. 

Appendix presents a more rigorous and consistent derivation of the equation for 
the flute oscillations, based on the variational principle. In the simplified equation 
we shall take into account the fact that the metric differs from the cylindrical metric 
when we write the operator (b · V), and we shall retain only the term proportional to 
cos fJ among the terms due to the curvature (of course, we shall lose the effect of the 
mean magnetic well in this way). 

If we expand the function II' into the Fourier series (\1' = E \1' .... exp (imfJ)), 
m 

we obtain the following system of coupled equations for the harmonics: 

1 mz 
V .!.('Y2 + k~) · V .1.11'"'" + -- E/31(\l'm+ 1 + ~~'m-l) = 0 (2.41) 

2 ez 
Here k... = m - nq is proportional to the longitudinal component of the wave 
vector, and 'Y2 =- w2 • This will be our primary model equation. 

Substituting \1'.... = \l'.(m - nq) and performing the Fourier transformation in 
the variable (m - nq), we obtain 

..!!.... (1 + s'y') dF + ('Y2 + a cosy) F = 0 (2.42) 
dy dy 

where a = 4E{3J and s' = q' e/q. Clearly, eq. (2.42) is much simpler than the in
finite system of linked equations (2.41). A special asymptotic method of solution 
of the ordinary differential equations with periodic or nonperiodic coefficients 
has been designed for solving equations of the type of eq. (2.42) (see [2.14]). 

The method can be described as follows. Write down the variational principle 
for eq. (2.42). Since eq. (2.42) contains two scales y - 1 and y - lis which 
greatly differ when s <C 1 (this is just the case in reality), this equation can be 
solved by averaging (the method of van der Paul and Bogoliubov). The resulting 
eigenfunctions of the form of F = F1 (sy) + F2(sy) cosy should be substituted 
into the equation for the variational principle. This makes it possible to include 
the terms of the form of exp ( -11 I s I) (which are not analytic in s) that can
not be taken into account by the conventional averaging method. 
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Fig. 2. 7. Numerical solution of the equation from 
[2.13] (curve 1); analytical solution of this equation by means of the asymptotic 
variational method (curves 2). The instability region is shaded. 

We can see how highly effective is the variational asymptotic method from the 
results of [2.13], for instance, curve 1 in Fig. 2. 7 calculated by numerical integra
tion (the region of instability is to the right of this curve). We have solved this 
equation analytically showing that, in fact, there are two curves starting at the 
origin (the curves 2 in Fig. 2. 7; the region of instability is between them). 

The equation of the flute oscillations of the plasma, which is applicable to an 
arbitrary cross section of the plasma column, can be written in the form [2.14] 
(see Appendix): 

Here the specific form of the expression for g,. is determined by the cross section 
of the magnetic surfaces. These metric coefficients for the circular magnetic sur
faces are given in [2.7]. 

If we apply the variational asymptotic method to eq. (2.43), we can obtain the 
analytical criterion for the ballooning modes of the flute instability in the 
tokamaks with circular magnetic surfaces [2.7]: 

1 ( 1 7 ) -s2 +ae 1----e•lllsl 
2 q2 4E 

3 --sa2 >0 
4 

(2.44) 
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Fig. 2.8. Dependence of /3* on the relative radius for 
the toroidal plasma column (Ria = 4.6) with the circular cross section for the given 
current profile (q0 = 1, q(a) = 1.6) and various pressure profiles (p = p 0(1 - e2/a2)'). 

1) I = 1; 2) I = l.S; 3) I= 2. 

Let us analyze the individual terms in criterion (2.44). We have already met 
some of the terms, namely, the first three terms in criterion (2.33). The most 
strange term is, apparently, the term proportional to exp(- 11 I s I). To under
stand the origin of this term, we shall analyze eqs. (2.41) retaining in them only 
two neighbouring harmonics with m and m + 1. Equation (2.41) shows that for 
m ,... I these harmonics satisfy the same equation [as in the case of helical in
stability; see eq. (2.9)] at the midpoint between the points e .. [m = nq(Q .. )] and 
e ... 1 [m + I = nq(e ... 1)]. Thus, we once more have the case of intersection of 
branches. In the case of the helical instability the eigenfunctions fP., and lp ... 1 in 
fact overlapped entirely; in this case the eigenfunction are localized near the 
resonance points and only their tails overlap so that, since fP..,. decline exponen
tially, the intersection gives exp (- 11 I s I). Such a dependence on s is clear: 
since the distance between the singular points e ... 1 - Q.. - 11 I s I , then the 
distance increases with decreasing I s I , and overlapping is reduced. Obviously, 
if we included three harmonics, rather than two, we would obtain· the terms with 
exp(- 21 s 1), and so on. However, they contain the additional factor E/3J -c 1 
and are, therefore, insignificant. 

The last term in criterion (2.44) describes the ballooning effect associated with 
the shear (sE2/3J), and is destabilizing for declining current density. Now we can 
see that the cancelling out of the ballooning effects in criterion (2.33) would, in 
fact, occur only for s - E2 -c I. 

Criterion (2.44) is local in character and therefore it makes it possible to deter
mine at which point along the plasma column radius the ballooning instability 
starts to develop at first. Figure 2.8 shows the plots of the critical pressure 
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{3* = 8r(p-2) 1'2/B~ as a function of the relative radius for three pressure profiles. 
The plots indicate the pressure for which at a given point of the plasma column 
there appears the ballooning instability for given distributions of the pressure 
and the current density. Since the ballooning effect is associated with the shear, 
the flattening of the current profile makes it possible to elevate the critical 
pressure. 

Variation of the cross-section shape of the magnetic surfaces affects the stabili
ty condition [2.15]. This leads to the natural question: how to change criterion 
(2.44) to take into account a noncircular shape of the magnetic surfaces? Before 
analyzing the effect of the shape of the magnetic surfaces on the ballooning in
stability, let us analyze in more detail eq. (2.44) to obtain a qualitative estimate 
of the primary effect. The first, stabilizing term in criterion (2.44) is associated 
with the shear, and the second, destabilizing term is associated with the curvature 
of the field lines. The third, stabilizing, term is proportional to the "geometric" 
part of the magnetic well which is automatically produced in the tokamak owing 
to the toroidal curvature ( V0 - E2 - q2) and is not related to the plasma 
pressure. The criterion implies that for q2 (e) - 1 (this is just the condition of 
the greatest practical interest) the stabilizing effect of the "geometric" magnetic 
well practically completely disappears, and the permissible plasma pressure can, 
generally, be strictly limited. The fourth term is destabilizing and related to the 
shear and the plasma pressure. The fifth term describes the ballooning effect 
weakened by the deepending of the magnetic well owing to the plasma pressure. 

The depth of the magnetic well is known to be the characteristic of the magnetic 
configuration, which is most sensitive to the variation of the shape of the 
magnetic surfaces [2.9]. Therefore, in the first approximation the effect of the 
variation of their shape should be expected to be reflected by the third and fifth 
terms of criterion (2.44). 

Let us consider the tokamak with noncircular magnetic surfaces which are 
described by the following equation in the coordinate system related to the 
"geometric" axis of the given magnetic surface [2.2]: 

1/; - (1 - e2t1' 2 ( U - e cos 2w)e2 + Q EQ2e•'2 [ (1 - ~) cos Jw 

+ ~ecosw J J = const (2.45) 

Here e = (k2 - l)/(k2 + 1), k = 1./IR is the parameter describing the ellipticity 
of the magnetic surfaces (/. and IR are the semiaxes of the ellipse), and Q is the 
parameter describing triangularity. To simplify the calculations and the resulting 
criterion, let us consider the case when the magnetic surfaces do not differ great
ly from elliptical ones (Q s 1). Using the variational asymptotic method, we can 
obtain the following criterion of stability for the tokamak with noncircular 
magnetic surfaces [2.16]: 

!.s-2 + aE[-! V0B'tR..Jl- e2- _!_] - Zak- 112e- 11 1sl- a 2 (Js/1 + eZ/2) > 0 (2.46) 
2 2 ~ 4 4 
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Fig. 2.9. Dependence of (3• on Qla for the plasma 
column with the D-shaped cross section for the same parameters as in Fig. 2.8. 

1 (1+k2)3 
/ 2 = k2(1 + 3k2) 1+ k 

(2.47) 

As we expected, criterion (2.46) differs from criterion (2.44) in the form of the 
geometric magnetic well (2.47). It can be seen from eq. (2.47) that in the absence 
of ellipticity (e = 0, k = 1) triangularity does not change the depth of the 
magnetic well. But ellipticity, even in the absence of triangularity, significantly 
alters the magnetic well. The case of the most practical interest is that of the 
combined effect of ellipticity and triangularity (D-shaped magnetic surfaces). The 
ellipticity also greatly changes the ballooning effect (decreases when the column 
is elongated along the symmetry axis of the torus) which is· proportional to the 
shear (the function / 1). Moreover, the criterion contains a new destability term 
proportional to the squared ellipticity (e2/z). This term is the difference between 
the ballooning effect not related to the shear and the deepening of the magnetic 
well owing to the plasma pressure [2.2]. 

Figure 2.9 presents the calculated critical plasma pressures in the tokamak with 
the D-shaped cross section for the same pressure and current distributions as in 
the tokamak with the circular cross section in Fig. 2.8. A comparison of Figs. 
2.8 and 2.9 indicates that we can increase the critical (3• by a factor of 2 to 2.5 
by altering the cross-section shape of the plasma column. 
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2.4. Thresholdlellll UINNipaalln· 
Balloonlna Modell 

The flute instability of plasma in the presence of dissiput1o11 wu' lil\1 uualy1.cd 
in [2.4]. In this study the curvature was simulated in the plunc IICllllll'try by 
means of the effective gravity, and the inclusion of finite conductivity wu~ ~hown 
to lead to instability in the system which had been stable within the fnum·work 
of the ideal hydrodynamics. The stability of the toroidal plasma column with a 
finite conductivity with respect to the flute perturbations was analyzed in [2.17), 
where the necessary stability criterion, similar to the Mercier criterion for the 
ideal plasma [2.11], was derived for the low-pressure plasma. The main effect of 
the inclusion of finite conductivity was the disappearance of the stabilizing effect 
of the shear. The effect of finite pressure on the flute dissipative instability was 
analyzed in [2.18] and, independently, in [2.19]. The toroidal plasma column was 
shown to be stable for the pressure gradients below the critical value. The in
stability had a threshold and, when the ballooning effect exceed the stabilization 
due to the magnetic well, the instability started to develop with the growth rate 
'Y - 71 1' 3, where 71 is the plasma resistance. 

The advances in the study of the ballooning modes of the flute instability of 
the ideal plasma renewed the interest to the analysis of the dissipative flute in
stability. The reason was that the necessary criterion of stability for the ideal 
ballooning modes proved to be more restrictive than the Mercier criterion, owing 
to the presence of the new destabilizing terms related to the shear [2.14]. This 
had led to a paradoxical situation when the threshold of the dissipative flute in
stability [2.18, 2.19] proved to be higher than the threshold of the ideal balloon
ing modes [2.14]. 

The first attempt to include dissipation in the ballooning modes was made in 
[2.20], where it was shown that the ballooning modes with a small growth rate 
'Y - 71 exist at any pressure gradient. This result did not answer the above 
paradox since the threshold instability has a much higher growth rate 'Y - 77 1' 3• 

In this section we shall find an answer to this question as we shall demonstrate 
that the dissipative ballooning modes have no pressure gradient threshold and 
develop with a high growth rate 'Y - 71 1' 3• 

We shall analyze below the dissipative ballooning modes using the equations of 
one-fluid magnetohydrodynarnics, including compressibility. According to the 
method employed in [2.5), the plasma disturbances are described by the electro
static potential ip, the longitudinal component of the vector potential A and the 
perturbed pressure jJ. The transformation suggested in [2.13] in the limit 
of large azimuthal numbers (m "" nq :.- 1) reduces the linearized initial system 
of equations to two equations for the Fourier transforms rp and p [2.21]: 

!!.._ G drp - 'Yzri(l + s2y2)rp + aRB' (__i__!_- sy _!_.!._) P = 0 (2.48) 
dy (I + G/r) dy 2 ae B' e ay B' 

( 1 - _I_!!!_) p- [ 1 - _1_ !!.._ 1 !!.._] 'I' (2.49) 
'Yzi! dyz - 'Y2i! dy (1 + G/r) dy 
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Heres = q'QIQ, a =- 87rp'Rq2/B2, T, = Rq/cA, d = B2/47f{!o. Tc = Rq/~, 
~ = 'YoPoiQ 0, T, = 47rua2/c2, a and Rare the minor and major radiuses of the 
torus, q is the safety factor, r = -yT,/n2q2, G = Q[g11/.../g + (s2y2/e2) (g22/.../g) -
2(sy/Q)(q12/.../g)], and g,. are the metric coefficients of the surface coordinate 
system with the straight field lines [2.10]. 

For the ideally conducting plasma we have 'Y - 1/T,, then G -< r and the 
system of equations (2.48) and (2.49) reduces to one second-order equation for 1fJ 
(see eq. (2.44)). 

In the case of nonideally conducting plasma we have 'Y- <C liTo and eqs. (2.48) 
and (2.49) have two different scales, namely, y - 1 and-y > 1. Hence, we can 
apply the van der Paul averaging method to these equations. 

The ballooning modes in tokamak for nq > 1 are the perturbations localized 
on the column radius, which correspond to large characteristic y values in the 
averaged equation. For y2 > Ml;r2 eqs. (2.48) and (2.49) are reduced to one 
averaged equation. For the circular magnetic surfaces this equation has the form 

r • [ rz I s2 z V: - a2(1 + s2y2 + Ml!r) J -0 (2 SO) 
P- f.v2< + y)+a o 2r(1+Mltr2)[1+r(1+s2y2)/NJ P- · 

Here M = T,/Ton2q2 and IV = T,/T,n2q2 are the parameters describing the ratio of 
the skin time to the sound time and the Alfven time, respectively, Ml = -yof3N2, 
where 'Yo is the adiabatic exponent (in the high-temperature plasma N > 1), and 
V0 is the magnetic well in the tokamak [2.10]. 

For the reverse limiting case -y2 <C Mltr2 the instability can be shown to be 
significantly weakened. The condition -y2 > Mltr2 in the conventional notation 
has the form -y2 > kf~ and implies that the averaged perturbation of the 
pressure does not have time to level off along the field lines. 

We can see from eq. (2.50) that the form of its potential significantly depends 
on the ratios sis. (where s. = a 1' 2/NV112), ala. (where a. is found from the 
condition a/2 = V0), and i31/3.(where /3. = a 413/ N2'3). For every low shears s :s s. 
and pressures i3 = 13. eq. (2.50) yields a low growth rate of the order of the inverse 
skin timer = a/2V0, as in [2.20]. 

Here we shall analyze the systems with the shear values in the range of prac
tical interest, s - 1 (naturally, s > s.). We shall solve eq. (2.50) with a varia
tional method. Write down the functional corresponding to this equation and 
substitute as the test function the function of the form p = l!(A2 + y2), where A 
is the variational parameter. 

After variation we obtain the following expressions for determining the growth 
rate and parameter A: 

(r3 + -yof3N2r) [ 1 - JVZ( ~2 - aVo) ;2s2r2A2] = aZJVZ/2 (2.51) 

a 2( ~2 - aV0 ) ;r2A2 + s3r1'2A/N = NZ/rA" (2.52) 
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Fig. 2.10. The normalized growth rater /N2'3 as a func
tion of a for various values of~= {3yofV2'3; 1) ~ = 0; 2) ~ = 1; 3) ~ = 10. The shad
ed region corresponds to the higli-temperature plasma. The dotted line represents 
the threshold growth rate of the nonpotential gravitational-dissipational instability. 

For high pressures {3 ~ {3., when the perturbation of the magnetic field is 
significant, the expression for the growth rate has the form 

[ 

N2t3 ( 2 )213 -- ~ - a V0 for a ~ a. 
r = s2'3 2 

0 for a s a• 
(2.53) 

This growth rate corresponds to the nonpotential gravitational-dissipational in
stability [2.18, 2.19] which has a pressure gradient threshold. 

For low plasma pressures, {3 s {3., a s a., and eqs. (2.51) and (2.52) can be 
reduced to 

(2.54) 

A qualitatively new result follows from eq. (2.54), namely, that the growth rate 
of the dissipative ballooning modes does not have a threshold in the pressure 
gradient. The instability starts to develop for any small pressure gradient with 
the growth rate r - ex2' 3N2'3 b - (1/r,) (r,/r,)2' 3]. This fully eliminates the 
paradoxical situation discussed above. 

Figure 2.10 shows the growth rate of the dissipative ballooning modes as a 
function of the plasma pressure gradient ex for various plasma pressures. Curve 1 
corresponds to {3 = 0 or the fully compressible fluid, 'Yo = 0; curve 2 cor
responds to ~ = {3yofV2'3 = 1, and curve 3 corresponds to 7f = 10. The 
region between curves 2 and 3 corresponds to the high-temperature plasma. The 
dotted line represents the threshold growth rate (2.53) which was, in fact, derived 
under the assumption that the sound speed was infinite. Thus, the ion sound 
smoothed the perturbations of pressure along the field lines and the instability 
did not grow for ex < a.. If the speed of ion sound is finite, we encounter an 
essentially different situation; the perturbations of pressure do not have time to 
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be smoothed along the field lines and for any pressure gradient there occurs the 
ballooning instability developing with the Alfven oscillations. The growth rate of 
these dissipative ballooning modes decreases with increasing plasma pressure, as 
can be seen from Fig. 2.10. 

It is interesting to find the region of localization for this instability, apart from its 
growth rate. The characteristic size ~e of the region of localization in the real space 
is related to the characteristic width of localization in they space by ~e = e I nqs~y. 
Using eqs. (2.51) and (2.52), we can calculate ~y ""' >-. for all values of the 
parameters ex and {3. For instance, the results for two characteristic cases ex ::s ex., 
{3 - {3. and a > a., {3 - {3. are ~e - ea115 /nqsN2' 5 and ~e = ea113/nqsN1'3• 

Using the above estimates and the well-known dimensional expression for the 
transfer coefficients x - 'Y I k2J. (in this case this is, apparently, the estimate for 
the turbulent heat conductivity), we can find for the low-pressure plasma 
x - (a21r.)(a16115/N2'15), and for the high-pressure plasma x - (a21r,)a2• In 
both cases the characteristic energy time is of the order of the skin time, and if 
these estimates are valid, then the dissipative ballooning in stability is not signifi
cant for the experiments. 

Conclusion 

The linear theory is just a first step in the analysis of the effect of the hydro
magmetic instabilities in the experiments. Only the nonlinear treatment can 
definitely demonstrate that a given type of hydromagnetic instability is possible. 

A fairly large number of theoretical studies have treated the nonlinear stages 
of the helical and tearing instabilities, resulting in improved understanding of 
them. However, in connection with our studies of the effect of the peripheral 
plasma on the column stability (Sec. 2.2), we believe that the formation and 
reconnection of the islands in currentless plasma should be analyzed in more 
detail. The nonlinear stage of the flute ballooning oscillations has not been 
studied at all. In particular, there is practically no understanding of the relative 
contributions of the ideal and dissipative ballooning modes and their effect on 
plasma confinement. Apparently, the nonlinear stage of the ballooning modes 
cannot be analyzed without taking into account dissipation. This is. the field of 
the highest current interest in the MHD theory of plasma. 

Appendix 

Simplification of the variational principle 

It is convenient to make use of the coordinate system with straight field lines 
[2.2) in which a length element has the form 

dP = g11 de2 + g22 d02 + 2g12 de = dO + g33 ds2 (2.A.la) 

where the coordinate e characterizes the magnetic surface. Since we consider the 
axially symmetric torus, the metric coefficients g,. are independent of the 
longitudinal coordinate s. In this coordinate system the ratio between the 
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equilibrium contravariant field components B'IB' = BJI.,/g = B0/g33 = qR is in
dependent of the angular variable fJ (here BJ = J/2na, J is the longitudinal cur
rent, and B0 is the longitudinal field) and this fact greatly simplifies the stability 
analysis. 

It is well known that the equations of motion of the ideal plasma can be deriv
ed from the variational principle. The variational treatment of the stability pro
blem in many cases proves to be more convenient than the direct use of differen
tial equations (this is especially true for complex systems). In any case, 
substituting a test function into the variational principle, we obtain the necessary 
criterion of stability of the sufficient criterion of instability. The more accurate is 
the test function the closer we are to the necessary and sufficient criterion (that 
is, the exact solution of the problem). Moreover, the variational principle tends 
to improve the results; for instance, if we make an error o ~ 1 in the test func
tion, the error in the expression for the oscillation spectrum proves to be of the 
order of o2 • 

The variational functional is the difference between the kinetic energy T and 
the potential energy W: 

T = ~ J Qo ( ~~y dV 

vi 

W = ~ J [ 'YoPo(div~)2 + 4
1
11" (curl [~ X 8] Y + F'Vp0 div~ 

vi 

- - 1- [~ X curl 8]·curl [~ X 8]] dV + -1- f (curl A)2 dV 
411" 811" J 

v. 

(2.A.1) 

(2.A.2) 

Here ~is the plasma displacement, Vi is the integration region in plasma, and Ve 
is the integration region in a vacuum. We shall transform the expression for W 
omitting the first term related to the plasma compressibility since it is known not 
to affect the boundary of stability. 

Equation (2.A.2) is too complicated since the displacement vector ~ generally 
contains three components which are, in fact, related to each other, so that 
eq. (2.A.2) does not lend itself to explicit analysis. 

The general method of simplification of eq. (2.A.2) suggested in [2.6) is ap
plicable to the systems in strong longitudinal magnetic fields (the small 
parameters in it are the squared ratio (BJIB0)2 between the field BJ of the current 
and the longitudinal field B0 and {3 for the total field, {3 = {3J (BJIB0) 2; in 
modern tokamaks we have {3J - 1, so that these parameters are close to each 
other in them). 

The main physical idea here is the elimination of the magneto-acoustic oscilla
tions. Ignoring the terms of the order of (BJIB0)2 and {3 in comparison with unity 
[2.3], we obtain the condition 

B• = 0 (2.A.3) 
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where iJ· is the contravariant component of the perturbed magnetic field. On the 
other hand, if we replace the displacement components with the quantities ~~. 
e~' and ~f. which are given by 

(2.A.4) 

and have the sense of the components of the longitudinal (~1) and transverse (~ ~> 
displacements, then we can write the following expressions for the components 
of the perturbed magnetic field, ignoring the small tenns of the order of (BJ/B0)2: 

BQ = (B. V) ~~ 

8' =- -.JiB'~' --.JiB'~ - 1 ( a a ) 
...;g as ~ ae ~ 

(2.A.S) 

B- = <-•> (~...;gw~ + ~...;gwr) 
.Ji ae ~ afJ J. 

(2.A.S) 

The condition iJ• = 0 implies that the displacement components are expressed in 
terms of one function IP: 

,s- _1_~ 
<;J. -

.JiB• ae 
(2.A.6) 

The function IP has the sense of the electrostatic potential. Now we can rewrite 
the field components (2.A.S) in the symmetric fonn: 

!Ju = - ill. ~ .!...:...!_ ip, fj8 = -1- ~ .!...:...!_ lfJ 
...;g 09 B' .Ji a e B· 

(2.A.7) 

Substituting eq. (2.A.6) for displacements and eq. (2.A.7) for the field com
ponents into eq. (2.A.2) for the potential energy W, we can readily rewrite it in 
the following form [2.24]: 

W = ~ j [ 41~ [ Ku( ~ ~ B ~ V (Jy + g22 ( ~ :e B ~. V 1P y 
V; + Ve 

_ 2g12 ~ .!....:...!_IP . ~ .!....:...!_ IP] _ dp0/de alP . _1_ D(IP, 1/B') 
g afJ B• ae B• .Ji B• afJ .Ji D(e, 9) 

+ ____L D[IP, (B . V /B')IP] J .Ji de dfJ ds (2.A.8) 
c..jgB• D(Q, 9) 

The three tenns in the brackets in eq. (2.A.8) describe the perturbed energy of 
the magnetic field; they vanish for the perturbations which are constant along 
the field line (B · V/B')IP = 0. The second tenn proportional to dp01de and to 
the curvature of the field lines describes the flute oscillations. The last tenn 
containing j• is responsible for the helical instability. 
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Integration in eq. (2.A.8) is performed over the plasma and vacuum since we 
formally extend the displacement (and the potential .p) continuously into the 
vacuum region. 

This description with the longitudinal component of the vector potential, A., 
and the electrostatic potential for the transverse flow of the plasma was first sug
gested in [2.22]. In other words, the simplified variational principle corresponds 
to the equations of [2.22] expanded in powers of l/B0• 

The variational principle (2.A.8) can be easily applied to the treatment of 
various specific instabilities. 

For instance, taking the test function in the form 

<Pt = c1e"' for e < a and <Pz = c2e·'" for e > a, 

we obtain the splitting of the kink instability modes described in Sec. 2.1. 

Equation for small-scale oscillations 

Take the perturbed potential in the form [2.13] 

~e. 8, s> = E e-im9 f e+imy~<e. y, s> dy 
m -oo 

where ~(Q, y, s) can be conveniently written in the eikonal form: 

~(Q, y, s) = F(a, y) e-inq(Q)Y+i(h!R)s 

(2.A.9) 

(2.A.10) 

Here the phase is constant along the magnetic field but varies very rapidly in the 
directions perpendicular to the field for m '"' nq > 1. The amplitude F(Q, y) is a 
slow-varying function in comparison with the phase and, thus, can be expanded 
in powers of the small parameter llnq. 

Substituting eq. (2.A.9) into eq. (2.A.8) for the potential energy and retaining 
only the principal terms for nq - oo, we can easily obtain 

(2.A.ll) 

where 

G(e, y) = e( gn + gzz s2y2 _ 2 gtz sy) 
.,;g .Ji e 2 .Ji e 

Variation of this functional yields the sought equation: 

_!_[G<e. y) aF] - 4Tp0Rzqz [_!_ _!_- sy i_ _!_] F = o 
ay ay .,;g B' oe B' e oy B' 

(2.A.12) 
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Asymptotic variational method 

We shall illustrate the approximate analytical method for solving equations 
with both periodic and nonperiodic coefficients [see eq. (2.A.12)] by applying it 
to the simple model equation 

d dF 
- (1 + s2y2) - + a cosy F = 0 
dy dy 

Let us rewrite this equation eliminating the first derivative [F = u(1 

where 

lPu 

dy2 
V(y)u = 0 

V(y) - sZ 
(1 + s2y2)2 

a cosy 

1 + s2y2 

(2.A.l3) 

(2.A.14) 

For sZ ..c 1 the potential V(y) is a well slowly varying in the interval of the order 
of lis with superposed rapid oscillations; that is, eq. (2.A.13) has two scales, 
namely, y - lis andy - 1. Therefore, we can introduce a slow variable t = sy, 
apart from the variable y, as it is typically done in the averaging method. Let us 
separate the slow-varying and rapid-varying parts of the potential V(y, t): 

2r 

_ 1 r s2 
V = ~ j V(y, t) dy = ( 1 + t 2) 2 

0 

V= V-V=- a cosy 
1 + 12 

write down the solution in the same form: u = u + a. 
The oscillating part a is given by the equation 

lPa+ acosyu=O 
dy2 1 + s2y2 

(2.A.15) 

(2.A.16) 

(2.A.17) 

The solution of this equation in the lowest-order approximation in s has the 
form 

(2.A.18) 

Now we can write down the variational functional for eq. (2.A.l4) in the form 

2 

[ ( ~;) + V(y)u~ J dy (2.A.19) 
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and substitute the asymptotic solution of eq. (2.A.14) as the test function: 

_ ( 1 _a_co--'sy'--~ u = u + 
1 + s2y2 

(2.A.20) 

We can assume that the parameters here is not small and find the slow-varying 
function u with the variational method or from physical considerations. 

In the analysis of the stability boundary when the slow-varying function tends 
to a constant [2.23], we shall assume it to be equal to unity. After substitution 
of eq. (2.A.20) into the functional (2.A.19) and subsequent integration we can 
readily find the necessary criterion of stability from the condition. 

1 3 1 - s2 _ -ae-lllsl __ a2 > 0 
4 8 2 

(2.A.21) 

(the terms with a 2 and s2 are omitted since they are small in comparison with 
unity). This is the necessary criterion of stability for the model equation (2.A.13); 
it is similar to the criterion for the ballooning modes [eq. (2.44)]. 
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3. Helical Equilibria and 
Helical Instabilities 
of Current-Carrying Plasmas 

L. E. Zakharov, Cand. Sc. (Phys. and Math.) 

Introduction 

Some tokamaks make it now possible to obtain suffi
ciently stable discharges with q(a) = aB.I RB, close to 2 or even smaller (here a is the 
minor radius and R is the major radius of the plasma column and B. and B, are the 
longitudinal and poloidal magnetic fields). This significant progress in experimental 
work gives rise to a pointed question how to reconcile this fact and the theory of 
helical instability of a current-carrying plasma column. According to the theory of 
kink instability, the region q(a) < 2 contains a fairly wide zone in which the plasma 
must be unstable with respect to the kink-modem = 2, n = 1 (m and n are the wave 
numbers for the minor and major circumferences of the torus, respectively) which is 
a perturbation similar to the surface wave [3.1]. According to the linear theory of 
stability, the instability zone becomes narrow or disappears entirely only for strong
ly peaked current distributions corresponding to q(a)/q(O) "" 3.5 [3.2] [here q(O) is 
the q value at the magnetic axis]. The value of q(O) should be of order of0.5, that is, 
it should be considerably smaller than unity. However, realization of such current 
profiles should be inhibited by the processes of internal disruption which prevent 
noticeable increase in the current density over the critical value at the centre and 
decrease in q(O) below 1, according to the available theory [3.3]. 

The kink instability, which is typically related to the model of ideal 
magnetohydrodynamics, is widely believed to be not dangerous [3.4]. This belief 
springs from the studies ofthe dynamics of development of the kink mode [3.5-7]. 
As it was demonstrated by the results of numerical simulation, a noticeable rear
rangement of the configuration-formation of bubbles-is observed only when 
shear is absent and the value of q is constant over the cross section of the plasma 
column. If the current distribution in the plasma is not uniform, then, according to 
the calculations reported in [3.6], the kink instability gives rise to the development 
of the helical deformation of the plasma column which, however, is stopped at the 
nonlinear stage. The result is a new configuration and it can be said that the 
c.-quilibrium with the cylindrical symmetry unstable with respect to the kink mode 
mnverts into a new equilibrium with the helical symmetry which is stable with 
r rspect to the given mode. This nonlinear stabilization of the instability can be 
nut urally related to shear owing to which any deformation of the cross section of the 
plusrna column produces deformation of the internal magnetic surfaces that is 
prevented by the condition of frozen magnetic fluxes. 
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It is such interpretation of the nonlinear dynamics of the helical instability that 
has yielded the conclusion that, in Bateman's words [3.4, p. 182], the kink instabili
ty "is a good example of an instability which was once thought to be dangerous 
because of its large growth rate and broad spatial extent compared to internal inter
change modes and which now appears to be relatively harmless by itself". This con
clusion based on the results of numerical simulation has led to the situation when 
the kink instability is no longer regarded as a cause of developent of such 
enigmatical phenomena in tokamaks as, for instance, the disruptive instability. 
Moreover, this conclusion implies that the distinct instability zones given by the 
linear theory [3.1]lose their meaning if we take account the noninear effects reveal
ed by nymerical simulation. For instance, this indicates that we can realize the 
regimes of tokamaks corresponding to the instability zones and this practically does 
away with limitations on the current distributions [3.2] given by the classical theory 
of kink instability. 

This paper aims at reconsidering this viewpoint and proving that actually the 
transition to a new stable helical equilibrium is not possible. Then the above coclu
sions obtained from the results of numerical simulation of the kink instability and 
its accompanying limitations are upheld. 

As a starting point, we shall analyze the conditions of stability of a current
carrying plasma column in configurations with helical symmetry. We shall 
demonstrate that in a strong longitudinal field in the presence of helical deforma
tion the interaction between the plasma current iyi and the longitudinal field B, 
along the axis is of essential importance. Though this fact has been formally taken 
into account by the equations describing the helical equilibria the specific forces 
operating in configurations with helical symmetry have not been analyzed in detail 
yet. We shall show below that the interaction between the plasma current and the 
longitudinal magnetic field gives rise to a force which can disrupt the plasma col
umn under certain conditions. This is just the force that causes the helical in
stabilities. Its nature clearly indicates that if the plasma is in the zone of helical in
stability in the Shafranov diagram [3.1] (see Fig. 3.1.) then no transition into a new 
helical stability can occur; depending on the current density at the column axis there 
can occur either total rearrangement-inversion of the plasma-or only the surface 
envelope should be reversed while the central kern which is in the stability zone re
mains unaffected. 

Thus, we believe that stable tokamak regimes are feasible only in the stability 
zones in the Shafranov diagram and that the above conclusion on a relative 
harmlessness of the kink instability is incorrect. The stabilization of the kink mode 
found in numerical calculations is due not to the shear as it could be expected but 
entirely to the surface currents produced in the ideal magnetohydrodynamics 
employed in the model. Since the destabilizing force is a bulk one and the stabiliza
tion is due only to the surface currents, the ideal MHD model cannot gauge the ex
tent of harmfulness of the kink instability. 

This paper consists of the following material. Section 3.1 presents the solution of 
the equilibrium equations for the plasma column with the helical symmetry and 
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m m-~ot nq(a) 

Fig. 3.1. The diagram of stability for the kiilk mode 
with the wave numbers m and n. The left-hand boundary nqc, of the il\stability 
wne depends on the current distribution, position of the wall, and the ~ape of 
the column cross section; r 2 = -·/47rpa21 B;<.a). 

classifies the helical equilibria both for the case of the high plasma currentsand the 
cnse of the stellator with helical windings. These solutions are employed in Sec. 3.2 
to analyze the forces responsible for helical deformation of the plasma colu111n. Sec
tion 3.3 demonstrates the relationship between the theory of the helical equilibria 
und the linear theory of the helical instability. A stability criterion for tht helical 
modes is also found there. Section 3.4 presents a general picture of the res~tive in
stabilities of plasma with a free boundary. Nonlinear stabilization of the kink 
modes found in the above-mentioned numerical calculations is discussed in~. 3.5. 
The basic concepts of this paper are used to explain the disruptive instability in 
tokarnaks in Sec. 3.6. Appendix 3.1 presents the method for solving the equilibrium 
equation for the plasma column with elliptical cross section and an arbitrarycurrent 
distribution. Appendix 3.2 gives the derivation of the stability criterion give~ in Sec. 
3.3. 

3.1. Helical Equilibria of the Plasma Colum11 
witb the Uniform Current Distribution 

We shall consider the plasma column with the straight magnetic axis thus neglect
ing the toroidality effects. Let Q, w, and s be the cylindrical coordinates, where e = 
.J x2 +J.l and s is the longitudinal coordinate along the axis of the 1ystem. 
In the case of helical symmetry all parameters of the system are function of the 
variables Q and 8 = w - xs. The parameter x determining the period L == l1r/x of 
the system can be taken to be equal to nlmR, where R is the major r~lius of 
rquivalent torus and n and m are the longitudinal and poloidal wave llumbers 
(.1· = Rt', where r is the toroidal angle). We have x == 112R for the mode wit~m = 2 
und n = I which we shall analyze in more detail. 

The geometry of a magnetic configuration with the helical symmetry is dtscribed 
hy the helical flux function i'(Q, 8) equal to the magnetic flux across a heli:al sur
fnce with 8 = w - xs = const, which has the length of unity, the width elf Q and 
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whose one edge is the axis of the system I? = 0 [3.8]. Written below are the main 
equations for the configurations with the helical symmetry (3.8, 3.5]: 

(3.1) 

B* = [e.VY'], 411". [ 
-J= e.Vl] (3.2) 
c 

B, + XQBw = /("t) 

~ U. + xejw) = 4'l!"(1 + x2Q2)p'(Y') + //'(Y') (3.3) 
c 

The surface function /(Y') is, to within the factor c/4.,..., identical to the poloidal 
current across the helical surface with fJ = const between I? = oo and the running 
value of I?· 

The equation for the flux function Y' which is related to the geometry of the 
magnetic surfaces with 't(Q, fJ) = const has the form 

a a't a z 't 
-- --+ 
Q aQ 1 + x2Q2 aQ Q2 afJ2 

II' ('t) 2x/ 
=4'lr2p'(Y') + (3.4) 

1 + x2Q2 (1 + x2Q2)2 

The main features of the helical equilibria are revealed even in the long
wavelength limit when we can assume xa <C 1, where a is a characteristic transverse 
dimension of the plasma column. Then, instead of eq. (3.4), we obtain the well
known simplified equilibrium equation [3.5] 

(3.5) 

where }.('t) = j 1 is the density of the longitudinal plasma current, and (4.,.../clis • 
2xB. = 2(nlmR)B. describes the source of the longitudinal field flux across the heli
cal surface. In a strong longitudinal field we can assume}s = const. Here}s is nu
merically equal to such current density for which the resonance condition 
q = QB.I RB, = min("~ = 0) is satisfied. 

When we are solving the equilibrium problem it is natural to identify the plasma 
column boundary r with the current channel boundary. Outside plasma we have 
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/.(+) = 0 and eq. (3.5) is linear. The boundary conditions for"+" are 

a"+", a"+". 
"+"dr = "+".lr = const, -lr = -lr (3.6) an an 

II n sur face current i(8) flows along the plasma boundary, the second boundary con
dition is replaced with the pressure balance condition. 

Equation (3.5) has a simple exact solution for a plasma column with the uniform 
current distribution j,("t") = const when the column has an elliptical cross section. 

We shall make use of the elliptical coordinates 

x = d sinh u cos 11, y = d cosh u sin 11 (3.7) 

In the poloidal cross section. If the plasma boundary r coincides with the coor
dinate surface u = u0 U.("+") = j. for u < u0 andj,("t") = 0 for u > uo], we obtain 

I, ~ d sinh u0 = a,l, = d cosh u0 and, A. = 1,11. > 1 (3.8) 

where /. and /,are the semiaxes of the ellipse and 

tfl = 1: - 1~, sinh 2u0 = ~. cosh 2u0 = 
).2- 1 

The equation for the flux function "+" has the form 

2 ( (J2y CJ2+\ - u.-}B), u < "o [ 

4r .. 

/\+ = d2(cosh2u + cos2 11) au2 + all2) = c 
4r . 

Irs solution inside the plasma column is 

--Js, u>u0 
c 

+1 = :r U.- js) ~ [cosh 2u- cosh 2u0 - cos 211 

cosh 2u J 4r . . ).2a2 (x2 y2 ) 
+ cosh 2u0 cos 211 = 7 U. - Js) 2().2 + 1) a2 + ).2a2 

nnd the solution outside the column is 

+. -= 4: j, ~[ 2 (u- u0) sinh 2u0 + ;:~~:sinh 2(u- u0 ) cos 211] 

4,.. . d2 [ cosh 2u ] 
--Js-8 cosh 2u- cosh 2u0 - cos2v + h 2 cos211 
c ~ ~ 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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For n = 0 Us = 0) the solutions (3.11) and (3.12) are reduced to the well-known 
solutions for a straight column with elliptical cross section and translational sym
metry [3.9]. An important fact for finding the solution (3.12) outside the column is 
that the term proportional to (u - uo), which determines the logarithmic behaviour 
of -+ • at infinity (- In e), is related only to the real plasma current j, rather than the 
fictitious current js. 

The "current" js is related to the flux "+s of the longitudinal field B, across 
the helical surface with 9 = const: 

411" . x2 + y2 411" . cP 
"+s = - ~Js 4 = - ~ Js S (cosh 2u - cos 2v) (3.13) 

This is a power function of the coordinates. 
Let us make use of eq. (3.12) to analyze the magnetic configuration outside 

the plasma and to classify the helical equilibria. At large distances from the axis 
when we can neglect the field of the plasma current the magnetic field is deter
mined by the flux 

11". -+ ... = - -Js [(x2 + jl) + e .. (x2 - yZ)] 
c 

(3.14) 

where 

>.2 - 1 [ 2>. j,] 
eo .. = }.2 + 1 1 - (>. + 1)2 js (3.15) 

The first term in eq. (3.14) is the flux of the longitudinal field -+ s and the second 
term is the flux -+ext of the maintaining field which must be produced by external 
helical windings. The parameter e .. can be regarded as a characteristic of the 
geometry of magnetic surfaces at large distances from the plasma. If k .. l > 1, the 
surfaces are open and have hyperbolic cross sections, and if I e .. l < 1, the surfaces 
have elliptical cross sections and e .. = (>.~ - 1)1(>-~ + 1), where>-.. is the ratio bet
ween the semiaxes. 

Depending on the relationship between the plasma current j, and the current 
js [(41r/Clis = (2n/mR)B,; see eq. (3.14)] there can exist three types of configura
tions outside the plasma. 

1. The case of strong plasma current. Then j, is so high that I e .. I > 1. The 
longitudinal field makes a small contribution to the geometry of the magnetic con
figuration and in its poloidal cross section it is similar to the configuration of the 
straight plasma column with the translational symmetry (see Fig. 3.2a). The 
magnetic surfaces are closed only near the plasma column; behind a separatrix lying 
some distance from the column the magnetic surfaces are open. 

2. The case of intermediate current, that is, whenj, is not too high so that le .. l < 1 
but, at the same time, j, > jB. The magnetic surfaces are closed everywhere (see 
Fig. 3.1, band c). In the vicinity of the plasma column the magnetic field B• has the 
same direction as the field of the plasma current. There is a closed separatrix within 
which two magnetic islands are formed. Beyond the separatrix the magnetic sur-
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Fig. 3.2. The geometry of the magnetic configuration 

of lhc plasma column with the elliptical cross section. (a) Equilibrium with a 

high plasma current corresponding to the pinch with the current: I e 1 > 1. 

(b) Equilibrium with the intermediate currentj5 > j 8 , -1 < e-00 < 0, corres;onding 

lo I he tokamak parameters in the stability zone nq(a) < nq . (c) Equilibrium with 

lhe intermediate current j. > j 8 , 0 < e-"' < 1, correspon"cllng to the tokamak 

parameters in the instability zone nqcr < nq(a) < m. (d) Equilibrium of the 

slellatortype:j. < j 8 (nq(a) > m). 

laces also have simple shapes but the direction of the magnetic field B* is changed to 

I he opposite. In the magnetic islands q corresponds to 2 (form = 2 and n = 1). 

In this case we shall discuss the following two situations: (a) the major semiaxis of 

I he external ellipses is perpendicular to the major semiaxis of the plasma cross sec

lion (f"' < 0) (see Fig. 3.2b); and (b) the major semiaxes of the external ellipses and 

lhc plasma cross section are parallel (e00 > 0) (see Fig. 3.2c). As it will be shown 

hclow, the transition from the case (a) to the case (b) corresponds to crossing the 

houndary of the kink instability. 
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3. The case of weak plasma current U. < j 8 ). The direction of the magnetic field 
B• is always o~posite to that of the plasma field Bpi' The magnetic configuration has 

a simple structure without any separatrix. A separatrix may appear in a configura
tion of this type if we include the terms we have omitted in eq. (3.4), that is, if the 
long-wavelength approximation is violated. 

We can say that the configurations of the first type correspond to high-current 
pinch where the plasma current makes a predominant contribution to the formation 
of the geometry. The configurations of the third type can be said to correspond to 
the stellator configuration, where the contribution of the plasma current is small 
and the geometry is determined by the longitudinal field and the field of the helical 
windings. The configurations of the second type form an intermediate class and will 
be shown below to correspond to the tokamak parlllJ)eters. 

For the higher modes (m > 2) we obtain a full similarity to the above-discussed 
case of m = 2. An exact solution of the equilibrium equation (3.5) for the uniform 
plasma current can be obtained, for instance, using the appropriate conformal 
transformation. However, the solution is no longer so simple as that for the plasma 
column with the elliptical cross section. We shall have no need for the exact solu
tions in the case of m ~ 3 and we shall only give here the solutions in the linear ap
proximation (in deviation from the circular cylinder). 

Assume that the plasma boundary is described by 

Q =a+ ~cos(mw- nn. (3.16) 

and the plasma current is uniform U. 
responds to nq = m. 

const). The current density j 8 now cor-

For the boundary conditions 

(3.17) 

where Q = a + r cos m8, we obtain the following solutions of eq. (3.5): 

r [ Q"' ~ y = - - js Q2 - 2a~ - cos m8 
• c a"' 

r . 2~a [ Q"' a"'~ +-J.- --- cosmO 
c m a"' Q"' 

(3.18) 

As in the case of m = 2, we can obtain three types of the magnetic configuration 
outside the plasma which correspond to (1) the equilibria of a straight plasma col-
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Fig. 3.3. The magnetic configuration types for the 
plasma column with the helical deformation and the mode with m = 3~ 

umn of a non-circular cross section with an open separatrix, (2) the equilibria with a 
closed separatrix and magnetic islands, and (3) the stellator equilibria with a simple 
lopology (see Fig. 3.3). 

The case of higher modes (m ~ 3) differs from the case of m = 2 in that the 
maintaining field has a higher multipolarity for the case. of m ~ 3 and it depends on 
higher powers in the coordinates x and y than 2 (X'", Y"). The flux i' 8 related to the 
longitudinal field is proportional to x2 + y2 and, therefore, at large distances from 
1 he axis the topology of the configuration in the case of m ~ 3 is always determined 
hy the maintaining field. However, if we are not interested in the region outside the 
t•xlcrnal separatrix, we obtain a full similarity between the equilibria with m ~ 3 
nnd the above-discussed case with m = 2. For instance, we can distinguish between 
lwo types of configurations in the case of moderately high current and m ~ 3, 
unmcly, (2a) the cusps of the column cross section and the external separatrix are 
oppositely directed; and (2b) the cusps of the column cross section and the external 
't'Jlltratrix have the same direction. When we go over from (2a) to (2b), we cross the 
ldl-hand boundary of the stability diagram for the kink mode. 

Appendix 3.1 presents an approximate method for solving the equilibrium equa
l ions for an arbitrary distribution of the plasma current. 

,. 
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3.2. Forces Determining the Equilibrium 
of the Plasma Column with 
the Helical Symmetry 

To understand the nature of the forces determining the shape of the plasma col
umn cross section we have to identify the field produced by the external windings in 
the total solution of the equilibrium equation. These fields are, firstly, the 
longitudinal field B, and, secondly, the multipole field which should be produced by 
the external helical windings. The latter will be referred to as the maintaining field 
Bext and its flux will be denoted as if ext· 

To identify if ext in if e we must subtract the longitudinal field flux if s [see eq. 
(3 .13)] from if e omit the logarithmic term -In Q corresponding to the main part of 
the plasma field if pi and take the solutions having singularities only outside the 
plasma including Q = oo . The remaining terms in if e which decline for Q - oo are 
related to the field of the plasma current. 

For the plasma column with the elliptical cross section we obtain 

411" • d 2 sinh 2u 2 411" . d2 1 
"text= --J,- 0 e- u•cosh2u cos2v + -J8 - h 2 cosh2u cos2 11 

c 8 cosh2u0 c 8 cos u0 

411" 1 >.2 - 1 [ 2>. l 
= ~(.xZ - y2)4 >.2 + 1 (>. + 1)2 j, - jJ (19) 

For instance, equation (3 .19) yields the well-known expression for the column with 
the translational symmetry for n = 0 (iB = 0) [3.10-12]. 

Before analyzing the forces in the equilibrium with the helical symmetry we shall 
first find what determines the translational-symmetry equilibrium of the plasma col
umn with the elliptical cross section. The field if ext = (211" I c )A (.xZ - y2) is a purely 
quadrupole field corresponding to four straight conductors parallel to the plasma 
column (see Fig. 3.4a). The currents with the same direction as that in the plasma 
are attractive and give rise to a force disrupting the cross section of the plasma col
umn. The balance of this force and the intrinsic contraction of the plasma current is 

e I ext O lext=O 
0 

Q Bext 

Bext 

e 0 0 e ® 

Fig. 3.4. The interaction UP1 X B.xtl of the plasma cur
rent with the maintaining field. (a) B. is lower than the critical value, nq(a) < 
< nqcr. (b) B. is equal to the critical value, nq(a) = nqcr. (c) B. is higher than the 
critical value, nq(a) > nqcr. 
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l'"'<'twly the fn~.:tor that determines the shape of the cross section of the plasma col-
1111111. 

It i' wdl known that when the current in the quadrupole windings increased so 
thnt ,;1 • 0.15}., which corresponds to A= 2.89, the disruptive force exceeds the 
loru· ol intrinsic plasma contraction and equilibrium becomes unfeasible [3.11, 
I IJI 

lilt· lust mention of this effect can be found in [3.13]. For the uniform current 
1 he n 11 ical relation between j, and A does not depend on the plasma dimensions. 
I ht·t dore, if A > 0.15}, the quadrupole confining field can fully disrupt the plasma 
column cross section. 

Now the interaction between the quadrupole maintaining field and the plasma 
, '"''·nt with a nonuniform distribution can be easily understood. Clearly, we also 
hnvr here a critical value of A for which an equilibrium with a given current 
dt,ltihution becomes impossible. When we are solving the equations the critical 
·o11unt ion is formally equivalent to the separatrix getting to the boundary of the cur
' t·nt dumncl. When the maintaining field is further increased, we encounter the 
lollowing two cases. 

1) The maintaining field exceeds the critical field, but at the centre of the plasma 
, olu1nn j,(O) > A /0.15. Under such conditions the quadrupole field will disrupt 
nnly the periphery of the column with the central part remaining unaffected. 

l) The balance condition for the current density U.(O) < A/0.15] is violated at 
the centre of the column, too. Under such conditions the plasma column is totally 
disrupted by the quadrupole field. 

The existence of the critical current density j, = A/0.15 below which there can be 
no equilibrium in the quadrupole field may explain the experimental difficulties 
with hreakdown in a preset quadrupole field. 

Below we shall see that such arguments which follow from the analysis of the 
rquilihrium of a column with the translational symmetry can be ·extended by 
nnnlogy to the case of the helical symmetry. 

l.et us now analyze the expression for the maintaining quadrupole field [see eq. 
(1.19)) for a column with the helical deformation. The term j 8 in eq. (3.19), that 
decreases (in comparison with the straight column) the quadrupole maintaining 
fidd + ... that would be produced by the helical windings, indicates that the helical 
'lahility involves an additional force equivalent to the interaction between the 
plasma current and the quadrupole field. The nature of this force is readily 
understood-it is the interaction between the plasma current jP1 flowing along the 
ht-lil:allines and the longitudinal magnetic field B,. It can be easily seen to be disrup
IIVl' and taking some of the responsibilities of the maintaining field (see Fig. 3.5). 
When the field B, is increased up to the critical value, so that 

. c2n 2A. 
Js = 411' mR B, = (A + 1)2 J, (3.20) 

the confining field "+'ext becomes redundant and the stability prevails in the absence 
ol helical windings (Fig. 3.4b). When B, is increased further, the disruptive force 
ll'lnted to the longitudinal field is higher than the force of plasma pinching by the 
'1wn magnetic field of the plasma. Under such conditions a confining field "+'ext of 
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Fig. 3.5. The interaction [jp1 x 8,] of the plasma current 
with the longitudinal field. 

the opposite sign is needed to compensate for the lack of balance of the above forces 
(see Fig. 3.4b). 

Thus, in contrast to the plasma column with the translational symmetry, the 
stability in the cross section of the plasma column with the helical deformation is 
determined by the balance of the following three forces: (1) the force of plasma self
contraction (pinch effect); (2) the force of the interaction with the maintaining 
multipole field 8.,1; and (3) the force of interaction of the plasma current flowing 
along the helical lines with the longitudinal magnetic field B,. 

It can be readily seen that the contribution of the third force increases and the 
critical value of B, [see eq. (3.20)] drops with an increase in deformation, that is, in 
A. The critical value of B, is the highest for the column with small deformation 
(A - 1). In the case of the elliptical (m 2) cross section and uniform current 
distribution it is 

B = 41r !!b._ 
' c 2n' 

For m = 2 and n = 1 it corresponds to 

q = 1 

. & 
}s = 2 (3.21) 

(3.22) 

that is, to the left-hand boundary of the instability zone of this kink mode in the 
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Shafranov diagram [3.1]. 
For higher modes the expression for "+"ext in the approximation linear in ~ has 

the from 

i' = --a2 -cos m8- ---J, -Js ?I" em 2~ [ m - 1 . -~ 
ext c am a m (3.23) 

and all said above is also applicable here. Generally, the critical value of the 
longitudinal field B. for the uniform current distribution corresponds to the 
condition 

1 . m . 
nq = m - , J, = m _ 1 Js (3.24) 

The conclusion that the critical longitudinal fields B, corresponds to the left-hand 
point nq0, in the Shafranov diagram is general and applicable to any current 
distribution in the plasma column (see Appendix 3.1). Indeed, if B, exceeds the 
critical value, then any small helical deformation of the plasma column gives rise to 
a force related to the longitudinal field, which is higher than the force of pinching 
by the own field of plasma. Clearly, this implies the kink instability in the absence 
of a compensating effect of the helical windings. 

Our analysis of the helical equilibria suggests that it is just the interaction between 
the plasma current and the longitudinal magnetic field that is responsible for all 
types of helical instabilities. This is evident for the kink mode with m = 1 and n = 1 
[3.14, 3.15]. To show this for higher modes with m ~ 2 we must perform the above 
analysis of the helical equilibria. 

The above results imply that the helical instability of a specific mode with m and n 
numbers is unfeasible in principle in the case of a sufficiently high, rather than low 
as is customary assumed, current density corresponding to the position to the left 
from the instability zone in the Shafranov diagram. Since the equilibrium equations 
describe both the ideal and the dissipative plasma, this conclusion is a general one 
and does not- depend on the model used for describing the plasma. 

We have seen from the above analysis of equilibrium that the cause of the helical 
instability does not disappear with an increase in the deformation. On the contrary, 
the interaction detween the bulk plasma current and the longitudinal field is inten
sified at the nonlinear stage of the instability with increasing helical deformation. In 
particular, this proves the unfeasibility of maintaining discharge under steady-state 
conditions in the zone of the helical instability since this instability will necessarily 
lead to a significant rearrangement of the configuration. 

When the current density in the plasma is nonuniform, B, is higher than the 
critical value, nq(a) > nq0,, but the current density at the magnetic axis is sufficient
ly high (nq(O) < m - 1), the development of the mode with m and n can result only 
in the rearrangement of the periphery of the plasma column. If under such condi
tions we have nq(O) > m - 1 at the magnetic axis, too, then the interaction of the 
plasma current with the longitudinal field can, in principle, fully tum out the 
plasma column. In our opinion, the former case corresponds to a minor disruption 
in a tokamak and the latter to a major disruption. 
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3.3. The Link Between the EquiHbrium Theory 
and the Theory of Stability of the Helical Modes. 
The Necessary Condition of StabiHty 

At fust sight, the results of Sec. 3.2 contradict the conventional opinion on the 
conditions of development of the kink instabilities. According to the conventional 
point of view, the safe zone is precisely the region of low currents, where the 
Kruskal·Shafranov criterion is met. But we shall demonstrate below that the results 
of the equilibrium theory are entirely valid and hold with the earlier developed con
cepts. Moreover, the equilibrium theory facilitates a unified approach to understand
ing of the general picture of the helical instabilities both in the ideally conductive 
and the dissipative plasma. 

The development of the helical instability can be analyzed by writing the balance 
of forces for each stage, that is, determining which forces needed for the 
equilibrium are lacking. Since we have identified above the main forces which con
tribute to the helical equilibrium, we can now employ the equilibrium theory for the 
analysis of the stability conditions. 

Let us once more treat the case of the uniform current distribution. According to 
the results of Sec. 3.3, the plasma must be unstable with respect to the mode with 
the numbers m and n for nq > m - 1. This result of the equilibrium theory is, 
clearly, not in full agreement with the theory of the kink instability [3.1] since it 
lacks the right-hand boundary of the instability zone. However, it should be 
remembered that in our equilibrium analysis we assumed a given plasma current 
distribution. The plasma motion due to the instability gives rise to the induced cur
rents in the plasma, which change the current distribution and, hence, the 
equilibrium conditions. 

The above analysis of the equilibrium with a given current distribution is fully ap
plicable to the instability for the plasma of a very low conductivity u - 0, when the 
current distribution in the plasma column is entirely determined by the external 
uniform electric field E which is much greater than the induced emfs (lie) [v x B) 
due to the plasma motion: 

. 1 j. 
-[v x B) <C E = -
c (] 

(3.25) 

The motion is, clearly, purely inertial under the effect of the above-mentioned in
teraction between the plasma current and the longitudinal field (see Fig. 3.6). At the 
linear stage this gives the instability with the hydromagnetic increment scale 

2Bi(a) 4?r a 
'Y = --(q + 1 - m), B,(a) = -j,- (3.26) 

4?rea2 c 2 

which was obtained in [3.16] for the analysis of the instability of mercury jets carry
ing current in a longitudinal field. The instability region given by eq. (3.26) can be 
readily seen to be identical to that predicted by the equilibrium theory. This case is, 
naturally, very far from that of high-temperature plasma. 

Let us now analyze the model of ideally conducting plasma with the free boun
dary, for which 

u=[oo, e<a 
o, e >a 

(3.27) 
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Fig. 3.6. The disruption of the plasma of low con
ductivity in a strong longitudinal field owing to the evolution of the helical in
stability of the mode with m = 2. (a) Uniform current density, nq > 1. 
(b) Nonuniform current density, nq(a) > nqcr' the necessary criterion nq(O) < m- 1 
is satisfied. 

and demonstrate how the equilibrium theory yields the instability condition for the 
classical kink mode [3 .1]: 

m-1<nq<m (3.28) 

If we are not interested in the value of the instability growth rate, then the motion 
equations for the plasma may be replaced by the equilibrium equations for the 
deformed plasma column. Then only the forces acting on the plasma surface are not 
balanced. We can fmd out whether the plasma is stable or not from the direction of 
these forces depending on whether they tend to increase or decrease the deforma
tion. 

When we analyze the helical deformation we must take into account that the 
longitudinal <II and the poloidal x magnetic fluxes are frozen into the plasma. As it is 
typically done, the poloidal flux x is defined as the magnetic flux across the torus 
opening formed by the given magnetic surface. In a strong longitudinal field B., the 
frozenness of <II means that the cross-sectional area of each of the magnetic surfaces 
is conserved, and when xis frozen in, the rotational transform /L(<fl) = dxld<fl (or q = 
11 /L) is conserved at each surface. But if we use the approximation linear in pertur
bation we can employ the old approach with the given current distribution for solv
ing the equilibrium equation. Therefore, magnetic configuration inside the plasma 
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will still be described by eq. (3.11) or eq. (3.18). Meanwhile, the external field 't will 
lack the maintaining field 'text' The part of the external helical windings providing 
for the stability of the column's interior will be played by the surface currents in
duced at the plasma surface. They can be easily found from the frrst boundary condi
tion (3.17) and the fact that for e oo the poloidal field component is absent: 
't.l Q _ .. = 'ts. Then we have 

.w. 11' . 2 11' . ., Q2 11' U . )2at: a"' ,.. • = - -JsQ + -J.a-,n- - - • - Js ,. -cos mfJ (3.29) 
c c a2 c e"' 

and the surface current is 

i,(fJ) = m~cos m{ m ~ 1 j • .,... js] (3.30) 

The sign of this current is, naturally, identical to those of the currents in eq. (3.23) 
in the external windings shown in Fig. 3.4. 

Though the equilibrium inside the plasma column is provided for owing to the 
surface current i,(fJ), the configuration, on the whole, is unstable since a 
ponderomotive force is acting on these currents. The easiest way to calculate this 
force is by analyzing the difference in the magnetic pressures at the column surface: 

8~-8~ = -1 ~(~\ 2 - (~\ ~ = 211' ma~(~j. - j) (j. - js) cos mfJ 
~i 811' r an/ an/ J c m "} 

(3.31) 

We see that in the zone of the kink instability [see eq. (3.28)] with mjsl(m - 1) > j. 
> js the magnetic pressure acting on the surface currents i,(fJ) tends to increase the 
perturbation as it should be expected. Equation (3.31) readily illustrates the origin 
of the boundaries of the instability zone in the Shafranov diagram (see Fig. 3.1): the 
left-hand boundary corresponds to the zero of the induced current i,(fJ), and the 
right-hand boundary corresponds to the zero of the effective magnetic field acting 
on this current since mB8 - (na/R)B. = 0. It can be generally shown that this result 
is valid for any current distribution in the plasma. This makes clear the well-known 
result that in the ideally conducting plasma for any other shape of the plasma cross 
section the right-hand boundary of the instability zone is given by the condition 
nq(a) = m. 

We have shown the identity of the results of the theories of equilibrium and 
stability for the uniform current. Now let us analyze the general stability of the 
plasma with a nonuniform current. Plasma destabilization is due mainly to the in
teraction of the current flowing in the peripheral regions of the column with the 
longitudinal magnetic field. Pinching of the plasma under the effect of its current is 
the stabilizing effect. Hence, it is clear that to stabilize the helical instability we have 
to increase the current density at the column centre and simultaneously decrease it 
at the periphery. This explains the well-known fact of the stability theory that if the 
total currents are the same the current distribution peaked at the centre is more 
stable than the uniform distribution [3.1] and shows the possibility of total stabiliza
tion of the kink modes with m * 1 for a nonuniform current distribution. 
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Moreover, we see here that, though the shear of the magnetic field necessarily ac
companies nonuniform current distribution, it does not concern the stability of the 
helical modes by itself. To make plasma we have just to provide for a balance of 
forces in favour of self-contraction of the plasma. 

These results can be easily illustrated with the energy principle. The stability con
ditions for the kink modes are most conveniently obtained from the expression for 
the potential energy [3.17]: 

(3.32) 

where Y = eB.(p. - nlm) is a test function describing a perturbation of the 
longitudinal component of the vector potential which is identical to within a factor 
to the perturbation of the normal component of the magnetic field, and ~t(e) = 
1/q(e). We know [3.18] that eq. (3.32) yields the stability conditions for both the 
kink mode with the free boundary and for the tearing mode. The difference is that if 
the resonance surface ~t(e.) = nlm is in the region of the ideally conducting plasma, 
then the necessary condition is Y(e.) = 0, while for the plasma of a finite conduc
tivity it is allowed that Y(e.) * 0 but the integral in eq. (3.32) is taken as the prin
cipal value. 

In the model of a step-wise (uniform inside the plasma) current distributionj: = 
-j/J(e - a) eq. (3.32) readily yields the well-known instability condition (3.28). 
From this we can easily obtain from eq. (3.32) the sufficient condition of the kink 
instability for a declining current distribution: 

nq(O) > m- 1, nq(a) < m (3.33) 

which was derived earlier from the analysis of the helical equilibria. 

Now consider a monotonic current distribution j(e) (j'(e) s 0) such that the 
resonance surface #L = nlm is beyond the current channel. Take for comparison 
the current distribution j 1(e) which coincides with j(e) for (e)< d (j1(e) = j(e)) 
and vanishes for e > d (j1(q) = 0). Owing to the increasing weight factor 
1/(p.-n/m) in the third term of eq. (3.32), the column stability is better provided 
for by the current density dropping along a smaller distance. Therefore, the 
distribution j 1(Q) is more stable than the distribution j(q). The more rigorous 
derivation is given in Appendix 3.2. 

If dis small, the distribution j 1(e) corresponds to the column with a uniform 
current the instability condition for which is nq > m - I. Hence, if the condition 
(3.33) is satisfied, the distribution j(Q) is certainly unstable. 

Thus, if the resonance surface nq = m is beyond the current channel, the 
necessary condition of stability of the helical mode with m and n (both for the 
plasma with the free boundary and the tearing mode) is 

nq(O) < m- I (3.34) 
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The above arguments on the cause of the helical instabilities are fully reflected 
by the energy principle written in the form (3.32). In particular, the higher 
stability of the distribution j 1(e) in comparison with j(e) readily follows from the 
equilibrium theory since the additional wings of the current distribution just 
increase the disruptive force due to the helical deformation of the column. 

As mentioned above, when the condition nq(O) < m - 1 is satisfied, the helical 
mode with m, n is not catastrophic even when the Kruskal-Shafranov criterion 
nq(a) > m is violated. In this case the helical instability can rearrange only the 
periphery of the plasma column without affecting its centre. This implies, in 
particular, that when we increase the current in a tokamak and pass the kink 
instability zone with m, n, we must provide for a nonuniform current 
distribution which would provide for nq(O) < m - 1 at the centre of the column 
when at the boundary we have nq(a) = m. These conditions are relatively easy to 
satisfy for the higher values of m, n since even a small current nonuniformity is 
sufficient for them. This explains, in particular, why the discharge is formed 
without instabilities if we promote current peaking at the centre at the starting 
stage. Moreover, it becomes clear why experiments typically reveal no modes 
with n * 1. For q "" 2 to 4 they correspond to higher values of m and are easily 
stabilized when the current distribution is nonuniform. 

Condition (3.34) is most difficult to satisfy when we pass the instability zone 
of the mode with m = 2, n = 1 (we ignore here the mode with m = 1). Here a 
ratio of at least 2 in q(a)lq(O) is needed. According to the calculations of [3.2], 
q(a)lq(O),., 3.S is needed for the full stability of this mode for power-function 
current profiles. These conditions, clearly, contradict the results of the 
reconnection theory [3.3] according to which q(O) increases up to 1 after each 
internal disruption. The stable regimes with q(a) ,., 2 obtained with some 
tokamaks suggest that the contribution of the reconnection processes for the 
mode with m = 1 was, apparently, overestimated in [3.3] and that, in fact, q(O) 
can be lower than 1. 

3.4. Resistive Helical Modes 
in the Current-Carrying Plasma 

As can be seen from the above discussion, in the two limiting cases of o- 0 
and o- oo the helical instability zones have a common left-hand point nq., (see 
Fig. 3.1) but quite different lengths to the right of this point. How does the 
transition from one limit to another occur? We shall give a brief answer to this 
question within the framework of the model of finite-conductivity plasma. 

Consider the following model of the plasma column with the free boundary: 

[ 
u = const, e < a 

u(e) = 0 > • e a 
(3.35) 

It should be borne in mind that the applicability of such a model to instability of 
the high-temperature plasma must be specially analyzed and we shall use it only 
for illustrating the results of the theory of helical equilibrium. 
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The exact dispersion equation for such model U.- u) was derived earlier in [3.19, 
3.16], where it was analyzed for the cases of u- 0 and nq = m. In the limit 
r,k/T8 > 1, where r. = .J4..-ea2/B~ is the Alfven flight time and r,k = 4..-ua2/c2 is the 
skin time this equation was solved in [3.20]. In accordance with the predictions of 
the theory of helical equilibrium there was found the resistive surface helical mode 
which is unstable when the Kruskal-Shafranov criterion is satisfied, nq(a) > m. The 
stability diagram for such a model is shown in Fig. 3. 7. This helical instability is the 
surface flow in the layer of the width 6 = (a2/Rq)(2mw0r,k)"1' 3, where 
w5 = 4..-eaZIBI and it has the growth rate 'Y = w0(4m2/w0r,t)113 which is 
considerably higher than, for instance, the growth rate of the tearing mode . 
. Physically, this mode is the principal adial mode of the current convective 
instability for such column model with the free boundary (u = 0 for e > a) and it 
exists for any distribution of the conductivity u(e) in the plasma. 

Such modes that appear when nq > m are also known to exist when the resonance 
surface is inside the plasma column with a nonuniform conductivity. These 
potential current convective instabilities [3.21] or the rippling modes [3.22] are due 
to the conductivity transfer with the motion of the medium. 

au 
-+v·Vu=O 
iJt 

(3.36) 

which gives rise to the current component along the helical perturbation. The 
interaction between this current and the longitudinal field B. when nq > m can be 
readily seen always to produce a force increasing the displacement. 

Thus, the general picture of the resistive helical instabilities fully conforms to the 
above conclusion that the helical instability of both the ideal and the dissipative 
plasma cannot occur to the left of the nqcr value in the Shafranov diagram (see Figs. 
3.1 and 3. 7). To the right of this point the helical instability manifests itself either as 
an instability ofthe ideally conducting plasma with the free boundary, or as the tearing 

r-1 

Fig. 3.7. The stability diagram for the plasma column 
with the free boundary for the case of fmite conductivity; b is the wall radius. 
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mode, or as the current convective instability (including the surface helical mode 
[3.20]). Interestingly, when the resonance condition is satisfied in the model with the 
free boundary, at the column boundary there is observed the interaction between 
the internal rippling mode and the external surface helical mode. This leads to a 
sharp increase in the growth rate of the resistive helical mode up to 
'Y = w0(16m2/w0r,k)1' 5 (see [3.16]). 

The general picture of the helical instabilities suggests that though the left-hand 
instability zone point nqcr in the Shafranov diagram is sensitive to the current 
distribution, the position of the wall and the shape of the column cross section, it is 
not sensitive to the plasma model and is the same for the high-temperature plasma 
and just for a conducting fluid. 

On the contrary, the right-hand instability zone point nq(a) = m does not depend 
on the current distribution and the shape of the column cross section but it is 
sensitive to the model of the column. For instance, the model discussed here even 
for a high but finite conductivity has instabilities with high increments in the region 
nq(a) > m (though they are much smaller than the hydromagnetic ones). Actually 
these instabilities do not occur in the tokamak plasma since the plasma conductivity 
u is a function of the magnetic surface, u = u(Y), owing to the high longitudinal 
electron heat conductivity equalizing the electron temperature along the field. 
Therefore, the model of conductivity convection with the plasma given by eq. 
(3.36), which determines fast instabilities, cannot be realized in the pure form. We 
can say that the applicability of the Kruskal-Shafranov criterion nq(a) > m to the 
current-carrying plasma is based, in fact, not on the high electric conductivity of 
plasma (u = oo) but on the high longitudinal electron heat conductivity which 
provides for the dependence u = u(Y). 

Thus, to fully eliminate the instability of a certain mode with m, n we must be to 
the left of the instability zone, that is, at a higher current. Under such conditions 

Fig. 3.8. Multiply connected equilibrium magnetic 
configuration with helical symmetry. 
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this mode can be regarded as being absolutely stabilized in a certain sense. The 
modes whose stability is provided for by the condition nq(a) > m can be regarded as 
being conditionally stabilized. For instance, when the total current in the column is 
increased while the current density proflle is conserved only the modes which were 
conditionally stabilized can become unstable. 

In conclusion of this section we shall qualitatively analyze the possibility of 
obtaining the helical equilibrium for a current distribution which corresponds to a 
position within the instability zone for the ideal mode (see Fig. 3.1). As shown in 
Sec. 3.2 the equilibrium of such a column necessitates the helical currents /ext which 
compensate the interaction between the plasma current and the longitudinal field 
(see Fig. 3.4 b). These currents can be passed along the axis of the magnetic islands. 
Since under such conditions /ext I B and no forces will act on the maintaining 
conductors, these conductors can be replaced with the current-carrying plasma. In 
the general case the current-carrying plasma also outside the magnetic islands will be 
needed to provide for equilibrium (see Fig. 3.8). Though nq(a) will be greater than 
m at the boundary of such an equilibrium configuration, the current distribution in 
the central kernel corresponds to the instability zone of the mode with the free 
boundary. Such multiply connected equilibria can be regarded as the result of 
evolution of the tearing mode (see Fig. 3.8). Simply connected steady-state helical 
equilibria are unfeasible in the instability zone. 

3.5. Nonlinear Stabillzation 
of the Helical Instabilities 
of the Ideally Conducting Plasma 

Here we shall discuss the cause of saturation of the helical instabilities on the 
nonlinear stage, found in the numerical calculations reported in [3.6, 3.25]. The 
above model of the uniform current in the column with the elliptical cross section 
contributes greatly to understanding of this cause. According to the frozenness of 
the fluxes, we shall assume that the cross-sectional area of the magnetic surfaces and 
the rotational transform J£(4>) = 1/q(4>) are conserved. For the column with the 
helical deformation the general expression for I' in the equivalent torus of the radius 
R has the following form: 

dx n dY 
JL=-=-+R-

d4> m d4> 
(3.37) 

In this expression the first term is the geometric part n/m of the rotational 
transform due to the rotation of the surface, w- xs = const, and the second term 
describes the rotational transform related to the flux "+ across this surface. The 
factor R takes into account the length of the helical surface in the equivalent torus 
(it should be remembered that "+ is the flux per unit length). 

For the sake of simplicity, we shall assume that during the evolution of the mode 
with m = 2 and n = 1 the column cross section is elliptical and only the parameter A 
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increases. If at the start at >. = 1 the current distribution was uniform, then p. will 
remain constant in the cross section with variation of >.. The column with the 
elliptical cross section and the uniform current proves to have the constant plasma 
current density j. for a constant p. and any >. since 

2p.=l+ -:--1 --( j. ~ 2>. 
Js >.2+1 

(3.38) 

Therefore, this case illustrates some features of the nonlinear evolution of the kink 
mode. We can readily see that to conserve the initial value of p. with increasing>. we 
must increase the current density j. since the right-hand factor in the second term of 
eq. (3.38) decreases with increasing>.. When the cross-sectional area is conserved, 
this corresponds to an increase in the bulk current of the plasma column. 

Now let us show that the relationship between the tearing force leading to the 
instability and the self-contraction of the column is not changed with such increase 
in the current density. Write down the expression for 't' ext in terms of the conserved 
parameter p.: 

(3.39) 

This expression shows that self-maintained equilibrium corresponds to p. = 1. 
When p. < 1 (q > 1) and irrespective of}.. the disruptive force due to the interaction 
between the bulk current of the plasma and the longitudinal field exceeds the force 
of current contraction. Therefore, despire the increase in the current density, the 
cause of instability does not disappear at the nonlinear stage but, on the contrary, 
increases owing to the factor (>.2 - 1)/(>. + 1)~ 

What causes the stabilization of the helical mode, found in numerical calculations 
which has promoted the conclusion on the safety of the helical modes? When the 
cross-sectional area is conserved, the bulk plasma current increases owing to the in
crease in the current density. The total current in the plasma column is determined 
by the external circuit. In particular, in the absence of a wall the total current must 
be conserved and therefore the symmetric component of the negative surface cur
rent i0 is generated on the plasma surface. It can be readily seen that the longitudinal 
field acts on it preventing development of the perturbation thus stabilizing the in
stability at the nonlinear stage at a certain value of i0• 

Similar arguments are applicable to any type of current distribution in the 
plasma. The cause of instability due to the bulk current increases, rather than disap
pears, with evolution of the mode. Stabilization is due not to the shear, as it is 
sometimes assumed, but exclusively to generation of the negative surface current. 

In particular, the negative surface current cannot occur in the stationary case. 
Therefore, there is no any stable helical equilibrium to be reached by the initially 
unstable configuration and we can definately state that the current distribution in 
the stable discharges corresponds to the stability criteria for the kink mode with the 
free boundary. · 

Though we have analyzed the mode with the free boundary, note that the increase 
in the bulk current is a general feature of any plasma deformation conserving the 
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magnetic fluxes. This should be accompanied with generation of the delta-shape 
negative current near the boundary of the current channel. We believe that genera
tion of this current also explains the nonlinear saturation of the pure helical mode 
found in the calculations of the dynamics of the resistive plasma with the fixed 
boundary [3.25]. 

3.6. Disruptive Instability 
in Tokamak 

The disruptive instability has been related to the simultaneous evolution of the 
tearing modes with different m and nand their nonlinear interaction [3.25, 3.29]. 
We believe that the above results provide a basis for a new approach to the 
qualitative analysis of the disruptive instability in tokamak [3.23]. The disruptive in
stability is known to result in the ejection of a considerable part of the energy from 
the column; it is basically related to the evolution of the mode with m = 2, n = 1, 
which is sometimes followed with a series of modes with m = 3, 4, ... [3.26]. The 
mode with m = 2, n = 1 can lead to the disruptive instability even for high values of 
q(d) • 4 at the limiter. 

As it was noted above, at the stationary discharge state the current distribution in 
the plasma column must satisfy all the conditions of the theory of hydromagnetic 
stability of the kink modes. This means that at the stable stage the mode with m = 2, 
n = 1 typically leading to the disruptive instability is stabilized either owing to a suf
ficiently nonuniform current proflle, so that q(O) < 1, or owing to the presence of 
the current-carrying plasma outside the resonance surface q = 2. It can be easily 
seen from eq. (3.32) that for q > 2 (p.- nlm < 0) the term with j' produces a 
stabilizing effect. 

But, as noted above, such stabilization of the helical modes by the peripheral 
plasma for nq > m is not absolute. The experimentally observed disruptive in
stabilities for the mode with m = 2, n = 1 sometimes even for high values of q(d) = 4 
at the limiter imply that the contribution of the peripheral plasma to stabilization is 
small. Therefore, we believe that in tokamaks, at least for the regimes with q(a) = 2, 
stabilization of the mode with m = 2 and n = 1 is due only to a sufficiently highly 
peaked current distribution, so that the necessary criterion q(O) < 1 [see (3.34)] is 
definitely satisfied. This conclusion agrees with the indirect experimental data [3.24] 
according to which q(O) • 0.5 in the stable discharges for q(a) '"' 2. 

Accordingly, the exitation of the helical mode with m = 2 and n = 1 is due to a 
drop in the current density at the centre of the column [an increase in q(O)], for in
stance, owing to internal disruption or accumulation of impurities. This leads to an 
increase in the effective radius of the current channel and violation of the stability 
conditions. If q(a) in the Shafranov diagram (see Fig. 3.1) is regarded as the value of 
q at a certain radius characterizing the current channel, the discharge can be said to 
enter the zone of the helical instability from the left. If q(a) is regarded, as it is 
typically done, as the value of q(d) at the diaphragm radius (we believe that it is less 
appropriate), then it can be said that the instability zone appears owing to a drop in 
the current density at the centre. In terms of this interpretation the instability zone 
was absent at the stable stage owing to a sufficiently large ratio q(d)/q(O). 
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Q=2 Q = 2 

Q- 2 Q=2 

Fig. 3.9. Qualitative picture of inversion of the 
plasma column, · nq(a) > nqcr. a-Violation of the necessary criterion nq(O) > 
> m - 1. b-The criterion nq(O) < m - 1 is satisfied. 

In principle, the instability of the mode with m = 2 and n = 1 can be caused also 
by the transfer of the current from the peripheral plasma inside the surface q = 2. 
This, clearly, will have a strong destabilizing effect [see eq. (3.32)]. But under such 
condition disruption must be preceded with a noticeable positive spike of the 
voltage. 

Either large or small disruption can occur depending on the value of q(O) directly 
before the disruption. As noted above, if q(O) > 1, then the helical instability of the 
mode with m = 2 and n = 1 can, in principle, result in total rearrangement of the 
plasma column. If the instability conditions for this mode are violated but q(O) re
mains below 1, then the helical instability can rearrange only the periphery of the 
column. Thus, we believe that large and small disruption differ only in the q(O) 
value, and the higher this value (the wider the current distribution) the stronger the 
disruption. 

As noted above, the cause of the helical instability, namely, the interaction of the 
bulk plasma current with the longitudinal magnetic field, does not disappear with 
the evolution of the mode. The negative surface current generated at the plasma sur
face serves as the stabilizing factor. It can be naturally assumed that such current 
appearing in the peripheral plasma sufficiently rapidly decays annihilating with a part 
of the bulk current. Thus stabilization of the helical mode is eliminated. According 
to the concepts reported in [3.5, 3.21] the evolution of the nonstabilized helical 
mode results in the inversion of the plasma column, so that its central part is re-

(b 
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moved outwards and the peripheral part is drawn inwards (see Fig. 3.9). This pro
cess leads to an increase in the minor radius of the plasma. 

We can evaluate the effect of the variation M of the total plasma current by 
analyzing the condition of conservation of the total helical flux "t". The helical flux 
between the shell and the magnetic axis (or some surface with the radius a.,J prior to 
disruption can be taken to be equal to the helical flux between the shell and the new 
plasma surface, where the column core is found after the inversion: 

b b 

f [ B.<o>- ~~B~ do=) [ BJ(Q)- ,:s~ dQ 
am d 

(3.40) 

Here B, and Bl are the initial and fmal distributions of the field of the current, b is 
the shell radius, and d is the radius of the surface where the plasma core is found 
(d) can be naturally related to the radius of the diaphrqm). Hence, the current 
jump 6/ is given by 

(3.41) 

where I; and q(d) are the initial values of the flux internal inductance and q at the 
diaphrqm radius.· In the case of total inversion, am= 0, eq. (3.41) yields for the 
parabolic current distribution with q(d) = 2 

M 1 
I= 2ln (IJZicP)' I;= 314 (3.42) 

Typically, the current increase owing to disruption is of the order of IS%. But eq. 
(3.42) gives a higher value of Mil. This implies that, apparently, even large disrup
tion typically does not lead to the total inversion of the column. 

In this case we can estimate the radius am and fmd the zone of mixing using the 
measured value of 61 I I and eq. (3 .40). In theory am can be regarded as the maximum 
radius for which the core of the column (Q < a.,J for a given current distribution in it 
is stable if there is no current-carrying plasma at Q >am. 

When the mode with m = 2 and n = 1 has been passed, the value of q(O) at the 
centre of the column proves to be 2 if the column has been totally restructured. This 
provides for the development of disruption [see eq. (3.33)] for the mode with m = 3 
and n = 1 and so on. In this way we can explain the sequence of appearance of the 
helical harmonics in the case of large disruption. 

Note that when q(O) > 1, there can also occur the instability of the mode with 
m = 3 and n = 2 [see eq. (3.33)], which, in principle, can result in disruption. 
However, the resonance surface for it lies deeper than for the mode with m = 2 and 
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n = 1. The experimental observation that the disruptive instability mainly occurs 
just for the mode with m = 2 and n = 1 indicates that the fractional mode with 
m = 3 and n = 2 behaves as the tearing mode which is stabilized by the currents 
flowing beyond the surface q = 1.5. 

In terms of our approach the time of evolution of the disruptive instability is 
determined by the decay of the surface current. Within the framework of the model 
of plasma with finite conductivity this time would be close to the skin time 
calculated for a certain peripheral conductivity of the plasma. We believe that such 
simplified model is insufficient for explaining the actual time of disruption and we 
shall have to put forward a more consistent model of the peripheral plasma. 

Conclusion 

In this study we have attempted to demonstrate the close links between the 
theories of helical equilibrium and helical instabilities of the current-carrying 
plasma. We have found the condition of helical equilibrium in the long-wavelength 
approximation and revealed the specific features of the configurations with helical 
symmetry due to the essential role played by the interaction between the plasma cur
rent and the longitudinal magnetic field in such configurations. We have explicitly 
shown the cause of the helical instabilities and estimated the extent of their influence 
on the plasma. In particular, we have shown that the helical instabilities can be 
regarded as relatively harmless if there is a sufficiently large ratio between the values 
of qat the axis of the column and the plasma boundary [q(a)/q(O)] which plays the 
part of the actual safety factor of stability of the plasma column. Formally, the suf
ficient condition is that for nq(a) "" m we have nq(O) < m - 1. When these condi
tions are satisfied, we can pass the respective instability zones and increase the cur- . 
rent in the plasma column. For instance, if we conserve q(a)lq(O)""' 4, which is 
found in the regimes with q(a)"" 2 according to the indirect data [3.24, 3.27], we can 
hope to obtain stable regimes with q(a) ""' 1. 

The conclusion that the requirements of the linear theory of stability must be 
satisfied imposes some restrictions on possible current distributions in tokamaks 
and can prove useful for interpreting the experimental results, especially, for the 
regimes with low q(a). 

Appendix 3.1 

Equilibrium of the Column with the 
Elliptical Cross Section and 
Distributed Current 

The class of analytical exact solutions of the equilibrium equations is very limited. 
The approximate approach based on the method of moments [3.28] is more effec
tive than the attempts to find exact solutions. We shall use it for describing the 
equilibrium in the column with elliptical cross section and helical symmetry. 

Assume that the cross section of the magnetic surface is described by the equa
tions 

x= a cost, y = A(a) a sin t (3.Al.l) 
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where a is the coordinate corresponding to the magnetic surfaces, and )..(a) is the 
ratio between the semiaxes of the cross section. At the boundary of the column we 
have )..(a0) = )..0• The metric coefficients which will be used below are 

a2 
Q22 = 2[)..2 + 1 + ()..2 - 1)cos 2t) 

[ a)..' 1 a)..' ] yg = a).. 1 +- ---cos 2t 
).. 2 ).. 

(3.A1.2) 

The effective current density j(if) = j,(if)- j 8 is now regarded as a given function 
j(a). 

If we ignore the effects of toroidality, the equations for the moments have the 
form [3.30] 

!!____ / f• g:; if' (a) ) = 411' <fie yg) j(a) 
da \ yg c 

(3.A1.3) 

The angle brackets denote averaging overt, and/. is the set of harmonic func
tions: / 0 = 1,/1 = ecos 9,/2 = e2cos 29, and so on. In the model of nested ellipses 
[see eq. (3.A1.1)] only two moments corresponding to the functions/0 and/2 are 
needed. The averaged quantities entering into eq. (3.A1.3) are 

(~) 
( 

1\ ( 1 a)..' _ ~) 
a )..2 + 1} 1 + 2 T + V 1 + T 

= 2).. 

( \ 1 a)..' 
+ )..2 -1} 2T 

(}..' - 1) -~ - 2)..2_a_~_' 
(/2~) = a3 _____ V_;__ ~-r_T _____ " __ 

4).. _ ~-a).._' ( 1 +~-a).._' + ~-a).._') 
-y~-rT 2).. -y~-rT 

(3.A1.4) 

The first equation (3.A1.3) relates the flux if(a) to the current density j(a): 

11 

( K22) 411'J 1 if' - =- j(a)-(a2A)' da 
.Ji c 2 

(3.Al.S) 

0 

The second equation is used for determining the ellipticity of )..(a). We shall write it 
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down in the form suitable for direct numerical integration: 

-(>.'-1) 
a>.' >. 

[[ 
a>..' J 

T >.' + 6)..2 + 1- _(_1_+-~--1-+_a_>._)-,2 >.j(a) 

+·+{\+~) +>'-] 
+[4(>.'-1) 1 

- r;-:ar:: 
1+-y J.TT-- ~J 

II II 

II 

~ Jj'(a)a'A(>.2 - 1) da 

0 

= 4(>.2 + 1) ~ Jr (a)a'>.(A2 - 1) da- 4(>.'- 1) : 2 Jr (a)a2>. da 

0 0 

(3.A1.6) 

To solve eq. (3.Al.6) by the method of iterations we substitute the function A(a) 
from the previous iteration into the right-hand side and the expression in braces. 
This approach yields good convergence (:S 10 iterations) for all reasonable current 
distributions. 

The magnetic field B• has the form 

IB•I=Y'(a)IVal= Y' .V>-2+1+(>.Z-1)cos2t 

>....;2 1 + .!. a>.' - .!. a>.' cos 2t 
2 >. 2 >. 

and the rotational transform has the form 

II 

n dY n 411" R j(a)aZ>.- f j'(a)aZ>. da 
~t(a)=-+R-=-+ o 

m d4> m c B. h ( K22) 
(a-")' -

.,fi 

(3.Al.7) 

(3.A1.8) 
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In this model the quadrupole component of the confming field ~en is 

~ ~2 -1 u.-is)~- aaii:a~ da 
+ = -- ~- 2 ---. -4 0 f 1 a, 

... c ( y ) ~ + 1)2 Js (~ + 1)2 

(3.A1.9) 

All quantities in eq. (3.A1.9) are taken at the column boundary a= a0• 

This model demonstrates the general relationship between the equilibrium equa
tions and the respective equations describing the stability of the helical modes. In 
the approximation linear in a=~ -1 eq. (3.A1.4) is directly reduced to the second
order equation 

(3.A1.10) 

Making the replacement a = Va and using the fact that~' = aB.(p. - nlm)IR, 
according to eq. (3.Al.8), we obtain for the displacement E the well-known equa
tion describing the stability of the helical mode with m = 2 [3 .1]: 

(3.Al.ll) 

Using eq. (3.A1.9) in the approximation linear in a we see that the condition for 
existence of the helical equilibrium maintained only by the longitudinal field is 

[ 
4~ isaoa- ~'(2a + aoa) = 0 
c ~ ••• , 

(3.A1.12) 

Since (4~/clis = (2nlmR)B., ~' = aB.(p. - nlm)IR, and a = Va, eq. (3.A1.12) is 
reduced to 

aE' 2p. 
- + 3 - -- = 0 (3.A1.13) E n 

P.- m 

which exactly corresponds to the left-hand boundary of the instability zone in the 
Shafranov diagram [3.1]. 

The model of nested ellipses which we have used here for describing the helical 
equilibrium can, of course, be employed for describing the equilibrium with the 
translational symmetry (n = O,js = 0), that is, for tokamaks with noncircular cross 
sections. 
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Appendix 3.2 

Proof of the Comparison Theorem 

In Sec. 3.4 we derived the necessary criterion of stability nq(O) < m - 1 from the 
energy principle by comparing the stability conditions for two current distributions 
j(e) andj1(e) which differed in their behaviour at Q >d. Tl).e arguments for greater 
stability of the distribution j 1(e) given there can seem to be unfounded since they 
take into account only the behaviour of the destabilizing coefficient at the test func
tion and ignore the spatial dependence of the test function. Therefore, we shall give 
here the rigorous proof of the theorem of comparison of the distributions j(Q) and 
jt(e). 

Clearly, it is sufficient to demonstrate that stability is decreased by any addition 
to j 1(e) of a flat current distribution j 2 = const (wings) at a certain segment d < Q 

s d1 with an arbitrary dtt so thatj2 < j 1(d). The proof is as follows. The criterion 
of stability is known to be the absence of zeros of the solution Y(e) of the Euler 
equation satisfying one of the boundary conditions, for instance, for Q = oo [ Y( oo) 
= 0]. At the segment d1 < Q < oo such solution is 

and at the segment d < e s d1 it is 

Y m = 1 :A ( ;) m + 1 ~ A ( :l) m 

The constant A is found from the condition of joining for e = d1 

d1 Y: d1 Y.:. 2p.f 
-----= ----

Y. Ym n 
JA.z- m 

where p.f = jzRI2B. and p.2 = p. (d1). Hence, we obtain 

JA.t ( e) m mp.z- n - JA.t( dl) m 
Y. = - + -

m mp.z- n dl mp.z - n e 

Now let us find from the joining conditions for e = d 

d· Y.:. d· Y/ 
n 

P.t- m 

(3.A2.1) 

(3.A2.2) 

(3.A2.3) 

(3.A2.4.) 

(3.A2.3) 

[where JA.t = h(d)RI2B., p.1 = p.(d)] the logarithmic derivative of the inner solution 
d · Y{ /Yi. Equation (3.A2.5) yields 

(3.A2.6) 
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where D = df.llP > 1. To determine that the distribution with the additional wings 
(Jit * 0) is less stable than the initial distributionj1(e) (JLt = 0) we have just to show 
that the contribution ofthe term - P.t to d · Y{ I Yi is positive. Since 

P.z = P.1 ~ + P.z( 1 - ~) 

direct calculations yield for this term 

(mp.1 - n + nir - mp.1D"'-1 - p.t(mir - Ir - m.rr-1 + 1)1 
2p.t--------~--------------~--~------~--------

[p.t + (mp.2 - n - P.t)Ir](mp.t - n) 

(3.A2.7) 

(3.A2.8) 

The terms in the numerator of eq. (3.A2.8) can be conveniently rearranged in the 
following way: 

I I = (JI1 - p.t)(mir - Ir- m.I:r-1 + 1) + [n - (m - l)p.1](D"' - 1) (3.A2.9) 

The first term here is always positive, the second term in the instability zone of the 
distributionj1(Q) is also definately positive. Thus, instability of the above distribu
tion with wings follows from instability of the initial distribution j 1(e). 

Since any monotonic current distribution which coincides withj1(e) for 0 < e s 
d and has a nonzero current density for e > d can be obtained by overlapping ap
propriate layers with j 2, and this leads only to decreasing stability, we can say that 
we have proven the conclusion of Sec. 3.4 thatj1(e) has a higher stability thanj(e), 
which directly yields the necessary criterion nq(O) < m - 1. 
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4. Solitary Waves and 
Vortexes in Plasma 

v. I. Petviashvili, D. Sc. (P/rp. aNI Mlllh.) 

IDtroducdoa 

When we describe the waves in plasma we can often ig
nore the dissipative effects since they are slower than the effects of dispersion and 
nonlinearity. Dispersion, that is, the dependence of the wave group velocity on the 
wave vector, leads to spreading of wave packets owing to phase mixing of the har
monic waves constituting the wave packet. Nonlinearity is the dependence of the 
wave packet properties on the amplitude. In plasmas r.onlinearity typically results in 
matching of the phases in the packet and displacement of the wave energy towards 
higher wave numbers in the space of wave numbers. This gives rise to harmonics 
with large wave numbers and manifests itself in breakdown (or collapse) of the wave 
packet. At some branches of oscillations a stable equilibrium can set in between the 
effects of nonlinearity and dispersion and then a part of the initial perturbation is 
converted into a series of solitons, that is, the stationary solitary waves (see, for in
stance, [4.1-4]). It is not easy to trace the onset of such an equilibrium in time but 
nevertheless some equations have been solved with the inverse method of scattering 
[4.3]. If this cannot be done but soliton can be proved to be stable, we can assume 
that the initial perturbation will convert into a series of such solitons. However, 
even stability is far from easy to prove essentially in multidimensional and other 
complicated cases. Then we shall limit ourselves to finding soliton solutions with 
numerical method [4.S] and producing indirect evidence of possible realization of 
solitons. For instance, if the energy density in soliton increases with increase of 
energy, it is, probably, stable. 

In a weakly unstable medium wnere solitons can be realized, small disturbances 
will grow converting into solitons. The higher the amplitude of a stable soliton the 
greater the volume it occupies in the wave number space. The soliton will grow until 
its volume reaches the absorption region at high wave numbers. Then an 
equilibrium will be established between pumping at low wave numbers and absorp
tion at high wave numbers with a stationary energy flux between them. We shall 
refer to such solitons as the dissipative ones. For instance, such are the solitons 011 

the flowing down film of viscous liquid [4.6] (see Fig. 4.1). 
It has been found that the character of evolution of waves in an unstable medium 

depends on the relationship between the signs of the dispersion and nonlinearity 
correCtions which can either lead to localization and synchronization of waves into 
individual wave packets, giving rise to a random series of solitons (soliton tur
bulence) and sharply reducing the number of the degrees of freedom of the system, 
or mainly result in exchage of energy between the degrees of freedom each of which 
remains independent of the others (wave turbulence). The statistical approach is ful-



Fig. 4.1. Soliton turbulence on flowing down film of 
viscous liquid; (a) photograph; (b) computational realization of solution. 
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ly applicable to the latter state. In the case of soliton turbulence we can apply the 
statistical approach to solitons as weakly-interacting particles [4.4] but it is unclear 
how to do this in a sufficiently general case. The situation is simplified by the fact 
that the soliton growth ends with saturation and all solitons become the same 
(dissipative) solitons. The parameters of the dissipative soliton can be found fairly 
easily with the perturbation theory or the stabilizing factor method [4.5]. We en
counter great difficulties if we have to take into account the collisions between 
solitons. Figure 4.1 gives a clear illustration of the soliton turbulence. Another 
possibility is that instability in the medium gives rise to a multidimensional periodic 
wave in the form of one-dimensional, two-dimensional or three-dimensional lattice. 

The theory of nonlinear waves in dispersive media is based on the idea put for
ward by Korteweg and de Vries (KdV). According to this idea, for the sake of 
simplification, we should regard the parameters of nonlinearity and dispersion as 
being of the same order of smallness when we expand the wave equations of the 
general form into the series in powers of small parameters. When we take into ac
count these opposite effects on an equal basis, we can reveal essential features of the 
phenomena under consideration and obtain a foundation for explicit classification 
of them. Owing to this idea, such concepts as soliton, self-focussing, collapse, etc. 
became general in character. 

For a long time this idea was not popular owing to the apparent difficulties in
volved in the analysis of the resulting simplified equations. One of the first instances 
of its application was in the theory of plasma waves [4.1, 4.2]. 

We shall conditionally divide the simplified nonlinear equations into following 
two arbitrary groups; equations of the first group are obtained from the equations 
for the acoustic branch of oscillations, for instance, the KdV equa~ions; those of the 
second group are obtained from the equations for the optical branch, for instance, 
the NSE equation. The methods of analysis of the stability discussed below and the 
procedure for finding multidimensional soliton solutions are common for both 
groups of equations. 

4.1. Multidimensional KdV 
Equation 

Let us treat the branch of the potential acoustic oscillations. The equation for this 
branch contains, apart from amplitude, two characteristic parameters, namely •. th.e 
characteristic dispersion length D and the viscosity coefficient. We shall limtt 
ourselves to treating the isotropic medium and such disturbances whose 
characteristic size is much greater than D, the velocity amplitude is much smaller 
than the velocity of sound and for which viscosity can be ignored. Then the equa
tion of acoustic oscillations is 

az~ a 
--cZAp.= -aM~--(V~)2 (4.1) 
atz at 

Here~ is, for instance, the velocity potential, c is the sound velocity in the medium, 
and the dispersion constant a oc (cD)2 can be either positive or negative. Dispersion 
is referred to as positive or negative according to the sign of a. The right-hand side 
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of eq. (4.1) including dispersion and nonlinearity is assumed to be small. Therefore, 
we can further simplify eq. (4.1) still retaining its fundamental properties. If the 
energy density is small, the waves in medium can be regarded as a series of in
dividual packets weakly interacting with each other and propagating with the veloci
ty close to c. It is well known from hydrodynamics that nonlinearity results in 
steepening of wave packet in the direction of motion, so that the packet dimension 
in the direction of motion is, typically, much smaller than its transverse dimension. 
If we treat an individual packet, we can take 

p.=p.(z-ct, r.l, t) (4.2) 

where the z axis is parallel to the direction of propagation of the wave packet. In 
such a packet the dependence on the last two arguments is assumed to be weak and 
the derivatives with respect to these arguments are assumed to be of the order of 
smallness of nonlinearity and dispersion. Substitution of eq. (4.2) into eq. (4.1) 
yields 

iJZp. iJ4p. ~ ap.) 2 2c--+c2a.J.p. = a--c -
azat azt az az 

(4.3) 

We have retained here only the terms of the first order of smallness, and the terms 
of higher orders of smallness have been omitted (such as iJ2p./at2, and aM J.p.). 

Equation (4.3) conserves the following integrals of motion: 

(4.4) 

(4.5) 

Conservation of the integral (4.5) can be especially well demonstrated if we rewrite 
eq. (4.3) in the variational form:. 

a2p./azat = oH/op. (4.6) 

The KdV equation was generalized for the weakly nonlinear case and written in the 
form (see [4.1, 4.7]) 

which coincides with eq. (4.3) if we take 

u = ap.laz 

(4.7) 

(4.8) 

Equation (4. 7) was used in [4. 7] to study the stability of the solution in the form of 
one-dimensional soliton and the relationship between stability and the sign of 
dispersion was found there. The solution in the form of one-dimensional soliton 
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propagating with the velocity -o:kV2c is 

(4.9) 

where llk0 is the characteristic soliton width, and the condition of applicability of 
eqs. (4.1), (4.3) and (4. 7) leads to I a: I k5 -c c2. Since eq. (4. 7) describes the wave in 
the reference frame travelling along the z axis with the speed c, we see from eq. (4.9) 
that in the case of positive dispersion (a: > 0) the soliton has a negative amplitude 
and travels with a subsonic speed. In the case of negative dispersion the soliton has a 
positive amplitude and travels with a supersonic speed. But according to eq. (4.7), 
the phase velocity of infinitely small disturbances with the wave vector k along the z 
axis is (c/2)(k .L /k.)2 + o:k?/2c. Thus, in a medium with positive dispersion the speed 
of infinitely small disturbances is always higher than the soliton speed. In a medium 
with negative dispersion there exist such infinitely small disturbances whose phase 
velocity along the z axis is equal to the soliton velocity. This difference should deter
mine the stability of one-dimensional soliton. Indeed, as it was shown in [4. 7] with 
the perturbation theory and in [4.3, 4.8] with the method of the inverse scattering 
problem, the solution in the form of one-dimensional soliton is stable in the medium 
with negative dispersion and unstable in the medium with positive dispersion. 

According to the numerical calculations [4.5], eqs. (4.3) and (4.7) have the solu
tion in the form of multidimensional soliton in the case of positive dispersion. Let 
us find such a solution in the three-dimensional case. We shall seek the solution of 
eq. (4.7) for a:> 0 in the form of smooth axially symmetric stationary wave pro
pagating with the velocity - c 1: 

u = -2cJtJ, Q); (4.10) 

r = ~ (z + clt); Q = 2clr.lor"1' 2 (4.11) 

Equations (4. 7) and (4.10) yield 
82/ 1 a 8/ it'f azp 
-+--Q---=-arz Q 8Q 8Q 8t4 8t2 

(4.12) 

Assume that eq. (4.12) has such a solution that the integral jj2QdQdt is finite. 
Write down fin the form of the Fourier-Bessel integral 

f= jjF(p, q) cos (qt) J0(pQ) pdpdq (4.13) 

F= i jj/(f",Q) cos (qt) J0(pQ)QdQdf" (4.14) 

Here J0 is the zero-order Bessel function; here and below integrals are taken be
tween zero and infmity. Using the Fourier transformation, we obtain from eq. (4.12) 

F= GN, G • q2/(q2 + p2 + q4) (4.15) 

where N is the Fourier transform of the nonlinear term: 
2 

N(p, q) = -jjj2cos(qt)J0(pQ)QdQdt 
11" 

(4.16) 
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Thus, eq. (4.12) is reduced to the nonlinear integral equation (4.15). 
Equation (4.15) cannot be solved by the conventional iterative method since it 

yields a divergent sequence owing to strong computational instability. This instabili
ty can be suppressed as follows. Introduce the constants 

St= jjPpdpdq 

Sz = llFGNpdpdq 

(4.17) 

(4.18) 

Clearly, ifF satisfies eq. (4.15), then s1 = s2• Instead of eq. (4.15) we shall solve the 
following integral equation: 

(4.19) 

The principal qualitative difference of this equation from eq. (4.15) is that the 
degree of nonlinearity of eq. (4.15) is 2 while that of eq. (4.19) is 2 --y. Using the 
iterative method for the system of equations (4.13), (4.16)-(4.19), we obtain a rapid
ly converging series, and simultaneously s1 - s2• This means that by formally decreas
ing the degree of nonlinearity with the stabilizing factor (s1/sz)'Y we suppress the 
computational instability. It can be verified empirically that the most rapid con
vergence is obtained when 'Y is equal or close to 2 when the degree of nonlinearity is 
zero. For 'Y s 1 or 'Y ~ 3 the instability is not suppressed. Equation (4.15) indicates 
that F has a finite singularity of the form p 2/(q2 + p2) at the origin of the coor
dinates. As can be seen directly from eq. (4.12), this leads to f declining at infinity 
not as an exponential function but as a power function Ill - r•, where r is the 
distance to the centre of the soliton and n is the space dimension. 

The iterative procedure is performed in the following way: take the initial test 
function F, then find/ from eq. (4.13), and successively find N, s1 and s2 from eqs. 
(4.16), (4.17) and (4.18). Substituting them into eq. (4.19), we obtain a corrected F 
which we again substitute into eq. (4.13), and so on. The initial test function has a 
weak effect on the convergence of the iterative process. Recently, an exact analytical 
expression was found for the two-dimensional soliton solution of eq. (4.7) [4.9]. 

If the dimensionless equation for the two-dimensional soliton is written in the 
form 

iPj iPj ~~ ;pp 
--+-----=-

az2 ay2 at' az2 
(4.20) 

then, according to [4.9], the solution of eq. (4.20) is 

!= 12(3 + y2-z2)(3 + y2 + zZtz (4.21) 

The results of numerical solution of eq. (4.20) by means of the stabilizing factor 
method (see [4.5]) agree with expression (4.21). 

4.2. Stability of Multidimensional Solitons 
and the Langmuir SoHton 

The simplified equations typically have more integrals of motion than the initial 
equations. Therefore, if a stationary solution is weakly unstable in the general case, 
then it can prove to be stable within the framework of the simplified equation. 



129 V. I. Petviashvili 

The stability of three-dimensional soliton solutions was analyzed in [4.10, 4.11] 
for the simplified equations conserving the number N and the energy H of the 
quasiparticles. If for constant N the soliton solution gives the minimum H, then any 
perturbation conserving N results in an increase in the energy of the solution, and 
therefore the soliton is stable. It was shown in [4.11] that the presence of such con
ventional minimum of H can be found by using the Holder inequality and the com
paratively little-known inequality [4.12] 

where the integrals are three-dimensional and 1/; is any integrable function. 
For instance, let us treat the nonlinear SchrOdinger equation 

iN 
i-+Al/;+/(tp)l/;=0, tp • 11/;1 2 

at 
which conserves the integrals 

H= ![IV!/;1 2-F(tp)]dr, 

N= ll1/ll 2dr, F•jfdtp 
Using inequality (4.22), we obtain from eq. (4.24) 

H'2 [(j l1/ll4dr)Z/16N]1'3-jFdr 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

Hence, iff= tpk, the Holder inequality readily shows that for k < 2/3 the right
hand side of inequality (4.26) has a lower limit, so that H has a conditional 
minimum dependent on N. This shows that with this condition the three
dimensional soliton solutions are stable, and for k > 2/3 they are unstable. 

A more exact criterion of instability was obtained in [4.10] by means of varia
tional analysis of the spectrum of the perturbation eigenfrequencies for the soliton 
solution of eq. (4.23). 

If the soliton solution has the form 

O=const>O (4.27) 

then the integrals (4.24) and (4.25) are the functions ofO. Then, according to [4.10], 
soliton is stable if 

aN/aO>O (4.28) 

Otherwise, small initial perturbations of soliton grow exponentially with time. This 
condition is valid for spaces of any dimension. Figure 4.2 shows the dependence of 
Non 0 numerically calculated for the case of spherically symmetric nodeless soliton 
solution and f = tp/(1 + tp) in the three-dimensional space, which directly indicates 
that soliton is stable for 0 > 0.08. This illustrates the importance of inclusion of the 
additional nonlinear corrections of higher orders. If we had assumed simply that 
f = tp = 11/11 2, then all soliton solutions of eq. (4.23) would be unstable, accord
ing to the criterion (4.28), since in that case N is proportional to o-2 • 

The criterion (4.28) seems to be more general than we can infer from the above 
analysis. According to this criterion, the soliton solution of multidimensional KdV 
equation (4.7) is stable in the one-dimensional and two-dimensional cases and 
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Fig. 4.2. The "number of particles" as a function of 
frequency for the soliton solutions of the nonlinear SchrOdinger equation with 
"saturating" nonlinearity (a). The same dependence for the soliton solutions of 
the equation (2.12) for the Langmuir waves (b). 

unstable in the three-dimensional case, though this criterion has not been proven to 
be applicable to the equations of the type of eq. (4.7). 

Let us now analyze the stability of the Langmuir solitons. 
As noted in [4.4, 4.13], the most important nonlinear effect of the Langmuir 

waves is the variation of the plasma density under the influence of the 
ponderomotive force in the region where the wave packet is localized. For the se
cond, third and other harmonics the nonlinearity effect is smaller than the above ef
fect by a factor of (vl"ph)n,where "ris the thermal velocity of electrons, "Ph is 
characteristic phase velocity of the wave and n is the numbe of harmonics. In [4.4, 
4.13] this variation was found in the first nonvanishing order of approximation to 
within the squared field amplitude. In this approximation the three-dimensional 
Langmuir soliton is unstable. As noted in Sec. 4.1, higher-order nonlinear correc
tions can play a stabilizing part even for small packet amplitudes. Therefore, these 
corrections may be useful. They are most easily found in the kinetic treatment with 
quasilinear approximation, when we assume that the packet is in the soliton state, 
that is, it is stationary and has only one total frequency w. 

Then the oscillating part of the distribution function/1 is described by the equa 
tion 

aj, e afo 
- + v•V/1 = --Vrp-:-coswt at 17' av (4.29) 

where/0 is the distribution function averaged over time. In the quasilinear approx
imation / 0 is given by the equation 

e a 
v·V/0 = --- (VtpfJ coswt) (4.30) mav 
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U·100·m/T 

20 30 r/0 

Fig. 4.3. The dimensionless high-frequency potential 
in the Langmuir soliton as a function of the radius in the case of indifferent 
stability. 

For the sake of simplicity we shall treat the one-dimensional case with V =aJax. Us
ing/1 from eq. (4.29j and performing averaging, we obtain approximately 

afo = ~ u ~ , a2J + au ~ ~ , afo 
ax , a, axa, ax , a, a, 

E= -a"'tax (4.31) 
00 

Take/0 = jG.(x)Jo(qP)qdq. Then using the Fourier-Bessel transformation over , 
0 

we can reduce eq. (4.31) to the ordinary differential equation in G and find 
00 d 

n = ( f.d, = n0 _Jexp(-Tq2/2m) q 
J cr "~~" .JI + 2Uq2 

0 

[ mU 9(mU) 2 
] 

•no 1-T+2 T +. · · (4.32) 

Equation (4.32) is applicable to the three-dimensional case, too, when we have to 
take E =-VI{'. When we derived eq. (4.32), we assumed that the ion density follows 
the electron density which is the case if Ti -c Te. If this condition is not satisfied, the 
corrections to eq. (4.31) of the order of UZ can be readily found with the perturba
tion theory. We shall assume that the electron density in the stationary Langmuir 
wave packet has the form (4.32). 
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Then in the spherically symmetric case this packet satisfies the equation 

a 1 a [ mu 9(mu) J -OE+3IJ2---~E= --+- - E 
ar~ar T 2 T 

(4.33) 

In contrast to the Zakharov equation [4.13], this equation includes the term of the 
second order in U, which has a stabilizing effect in the sense of the criterion (4.28). 
On the other hand, the inclusion of higher-order corrections deteriorates the condi
tions for conservation of the integrals Nand H. Figure 4.2 shows the dependence of 
N = (m/Dl Udr on 0 found by soling eq. (4.33), and Fig. 4.3 presents the dimen
sionless high-frequency potential mU/Tin the soliton as a function of the radius (in 
the Debye radius units) for the value of 0 corresponding to the minimum of N. 
These plots show that the Langmuir wave packet could convert to the stable soliton 
state with increasing amplitude and decreasing size just when the packet size exceeds 
the Debye radius. 

The parameters of the dissipative Langmuir soliton were calculated in [4.14], 
where only the first nonlinear term in the right-hand side of eq. (4.33)was taken in
to consideration. The Landau damping at high wave numbers and energy pumping 
at low wave numbers were included, and the solution was found with the stabilizing 
factor method [4.5]. It has been shown that the Landau damping can be compen
sated with a relatively weak energy pumping, for instance, in the form of parametric 
instability. 

These calculations were stimulated by the experiments on the interaction between 
plasma and high-intensity laser radiations. In the regions where the local Langmuir 
frequency was close to the frequency or half-frequency of the electromagnetic wave 
the experiments revealed the formation of cavitons (depressions of the density of the 
plasma) whose characteristic size was of the order of several Debye radiuses. The 
lifetime of cavitons was considerably greater than the collapse time. Apparently the 
electron density in cavitons oscillated with one frequency close to the Langmuir fre
quency. This can explain the discrete character of the Raman spectrum of the elec
tromagnetic wave scattered in the region where the cavitons were formed. 

4.3. SimpUfied Equation for 
Langmuir Waves 
in Magnetic Fields 

An equation for the Langmuir waves in the absence of a magnetic field including 
the primary nonlinear effect, namely, the ponderomotive force, was derived in 
[4.13]. The characteristic dispersion length in this case is known to be equal to the 
Debye radius. The presence of a weak magnetic field greatly increases this length in 
the direction perpendicular to the field. Let us analyze the effect on the equation for 
the Langmuir waves [4.15]. 



133 V. I. Petviashvili 

The dispersive equation for the potential waves with the frequency close to w, and 
the wave vector direction close to that of a magnetic field can be written as 

w2 = w:(l + 3k~ti + a~ k;'l) 
w~ a•---
w:-w~ 

(4.34) 

where w,. and w8 are the Langmuir and electron cyclotron frequencies. If the fre
quency of the packet is close to w,., the potential in it can be written in the form 

1 
~ = 2[!/l(r,t) exp(-iw,.t) + c.c.] (4.35) 

Here the dependence of the "amplitude" 1/1 on time and r l. is weak and, for the sake 
of simplicity, we assume that the packet speed is much lower than that of the ion 
sound. Then the variation of the plasma density under the effect of the high
frequency force is described by 

I 
eN 1

2 
n1 = -l/[161r(T. + T,] Tz (4.36) 

In eq. (4.36) we can ignore the electric field perpendicular to the magnetic field 
owing to the assumed weak dependence of 1/1 on r .L • Hence we can find the local 
variation of the Langmuir frequency and eqs. (4.34)-(4.36) yield 

az ( 2i a"' az"') a nl al/t az az 
- -- - + 3r! - - - - -= a.i 1/1 4 • - + - (4 37) az2 w, at D az2 az no az .l ' .l ar ay2 . 
where n0 is the mean plasma density. Equation (4.37) gives different signs of disper
sion perpendicular to the magnetic field, depending on the sign of a. For a wave 
packet of a finite size eq. (4.37) conserves the number N of the particles and the 
energy H given by 

(4.38) 

(4.39) 

Note that the total energy of the wave packet is N + H. According to the sign of a 
given by eq. (4.34), eq. (4.37) can have a stationary three-dimensional solution if the 
plasma frequency is higher than the cyclotron frequency, when the contribution of 
the transverse electric field to the energy (4.39) is positive. We shall seek the sta
tionary solution of eq. (4.37) in the form 

a"' az = .J321rn0(T. + T,)A.f(Q,t) exp(iw,.A2tf2) (4.40) 

Here we have introduced the dimensionless coordinates 
A A2 

f = --z, Q = --r L (4.41) 
.J'Jro ..Jraro · 
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Now we obtain the following equation for the dimensionless real function f: 

(4.42) 

Equation (4.42) has the soliton solution, that is, a smooth solution tending to zero 
at infinity. This solution was found numerically in [4.15] with the stabilizing factor 
method described in Sec. 4.1. It can be readily shown that the soliton energy (4.39) 
is positive and the number of the particles is proportional to A -3, and therefore we 
have oN loA < 0 and such a soliton is unstable according to the stability criterion 
(4.28). In the presence of a small perturbation the soliton will either spread out or 
collapse. In the case of collapse it will convert into the dissipative soliton described 
in Sec. 4.2. Since the Larmor radius is greater than the Debye radius, the effect of 
magnetic field on such a soliton can be neglected. 

It has been observed recently that high-frequency radio waves are strongly scat
tered by the regions of the ionosphere irradiated with high-intensity radio waves with 
a frequency close to the Langmuir plasma frequency in the scattering range. The 
frequency of the scattered wave proves to be strongly modulated by a frequency 
close to the frequency of the scattering wave. This modulation and, possibly, the 
scattering itself can be explained by formation of a cluster of Langmuir solitons 
pumped by the high-intensity radio wave. The pumping is due to the parametric in
stability of the dissipative type occurring at low wave numbers in the fields of the 
high-intensity radio wave. 

Thus, the stationary three-dimensional Langmuir solitons described in Sec. 4.2 
can be formed in the ionosphere under the effect of a high-intensity radio wave at 
the fmal stage of evolution of the parametric instability. The solitons tend to form 
large-size clusters extended along B. Intense heating of electrons occurs in the 
cluster, resulting in a decrease in the plasma density in it. But the greatest decrease 
in the plasma density occurs inside the soliton. It is due to the ponderomotive force 
(high-frequency pressure) with which the Langmuir oscillations trapped in the 
soliton act on the plasma. The amplitude of these vibrations can be much greater 
than the amplitude of the pumping radio wave. The high amplitude of the vibra
tions in the soliton cluster can strongly modulate the waves scattered by the cluster. 
The modulation frequency is equal to the soliton frequency which is markedly lower 
than the Langmuir frequency of the surrounding plasma. 

4.4. SoUtons of the Electromagnetic Waves 
with Ordinary Polarization 

The electromagnetic wave with ordinary polarization in the vicinity of the 
Langmuir frequency has the anisotropic spatial dispersion: 

w2 = w2 + c2k2 + c'k2k2 w-2 p i • i p 

c2k2 cC w~, wl 

Here the axis z is parallel to the magnetic field. 

(4.43) 
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Let us analyze the conditions of existence of the ordinary wave in the form of 
nonspreading wave packet-soliton. The soliton exerts the high-frequency pressure 
on the plasma, so that the plasma density in the region of the packet is changed by 

n1 = -IEI 2 / [16r(T. + Ti)] (4.44) 

We shall see from the discussion below that the soliton is flattened across the z axis 
so that k, >- k .L. Under these conditions the electric field in the ordinary wave is 
almost parallel to the z axis, so that we can include in eq. (4.44) only E., that is, the 
field component parallel to B. Write down for E,: 

E, = .!._[E(r, t) exp(- iwpt) + c.c.] 
2 

(4.45) 

The characteristic frequency of the dependence of E on time is assumed to be much 
lower than w . Then eqs. (4.43)-(4.45) yield 

p 

2i oE c2 ( c2 o2 ~ 2 - -+- 1--- ~.LE+ lEI E/[16rn0 (T.+Ti)] =0 
Wp Of W~ W~ OZ2 

(4.46) 

When we derived eq. (4.46), we made use of the fact that the packet is elongated 
along the axis z. Equation (4.46) conserves the number of particles 

N= I IEI2cJr (4.47) 

and the packet energy 

H=J[cZIV El2+ c41v oEI 2 -IEI 4/[32rn0 (T +T.)~ dr 
2 .l 4 .l OZ e I 

wP wp 

(4.48) 

Now let us find the stationary soliton-like solution of eq. (4.46). To do this take 

E = ..J 16rn0(T. + Ti)Aj{Q, t)eiA'"'P'12 (4.49) 

!" = wPz/c, (! =Awl .Lie 

where f is a real function. Substitution of eq. (4. 7) into eq. (4.46) yields 

( 1_!_\L./=/-/] 
ari) Q 

(4.50) 

(4.51) 

To satisfy the conditions of applicability of our treatment, that is, c2k2 <C w!, w~ , the 

constant A (the dimensionless amplitude of the soliton) must be much smaller than 
unity. Equation (4.51) can be solved by the stabilizing factor method described in 
Sec. 4.1 [4.5]. We can see from eqs. (4.48) and (4.51) that the soliton of the ordinary 
wave differs from the soliton of the NSE in the second dispersive term in the square 
brackets in eq. (4.48) and in the left-hand side of eq. (4.51). It can be seen that this 
term has a stabilizing effect, since owing to it the wave packet energy (4.48) is limit
ed from below for a fiXed N. 

Such lower energy limit is sufficient for stability of the soliton. However, this 
stability can exist only for small A values. When the total soliton energy grows, A 
increases and the soliton dimensions decrease; this is equivalent to an increase in the 
effective wave number, so that the terms of higher orders of smallness must be in-
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eluded in the frequency expansion (4.43). Thus, we must add to eq. (4.43) the term 

-- 1+---c6k4.kl ( w~ kl) 
w~ w~ k~ 

(4.52) 

For large A values the last term in the parentheses in eq. (4.52) included in eq. 
(4.46) leads to the loss of the soliton stability resulting in collapse, that is further 
growth of the effective wave number in the soliton. Under the effect of a magnetic 
field the wave number leads to the build-up of the transverse curl component of the 
electric field of the ordinary wave and weakening of the dependence of the frequen
cy on wP. As a result, the wave is no longer locked by the depression of the plasma 
density and is emitted from the plasma. The I type bursts of the radiation in radio
frequency range of the solar corona [ 4.17] can be attributed to such a loss of stabili
ty simultaneously by a large cluster of solitons of the ordinary wave. 

4.5. Two-Dimensional Langmuir SoHtons 
in the Strong Magnetic Field 
Without Density Well 

High-intensity . beams of runaway electrons are observed in tokamaks and 
stellators in low-density regimes (wp < w.). They, apparently, are generated in 
regions of reconnection of the magnetic field lines, where a constant electric field 
appears along the magnetic field. To explain the reconnection and formation of the 
electric field we must assume that the electric resistance in the reconnection region is 
much greater than the resistance due to binary collisions of electrons. Probe 
measurements in the cross section of the plasma column revealed regions of 
localization of high-intensity Langmuir noises with the monochromatic frequency 
spectrum. Simultaneously, electromagnetic radiation with the same frequency was 
emitted from the plasma [4.18]. Apparently, the observed Langmuir waves give rise 
to the anomalous resistance needed for reconnection. The waves themselves are due 
to the instability of the runaway electrons generating waves with frequencies lower 
than the electron cyclotron frequency [4.19, 4.20]. 

Since the increment is not large and is localized in a small region, the condition of 
maintaining the anomalous resistance is that the Langmuir waves that are generated 
in this region do not spread over the whole plasma. 

In this section we are noting the possibility of self-localization of the Langmuir 
waves around a magnetic field line or at a magnetic surface, which is accompanied 
with a narrowing of the frequency spectrum of the turbulent noises. Both these ef
fects have been observed. in the experiments with the stellator Uragan-2 [4.18]. A 
peculiar feature of these strongly nonlinear effects is the absence of plasma density 
wells. The phases of the oscillations are self-correlated via the higher harmonics of 
the fundamental oscillating modes. The modulation instability is stabilized with 
damping at the Doppler resonance. 

A simplified nonlinear equation for the Langmuir waves in the magnetic field was 
derived in Sec. 4.3, where, as in [4.13] in which the magnetic field was ignored, the 
nonlinearity mechanism was the formation of the plasma density well under the ef-
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feet of the high-frequency pressure. In this equation for w < w8 the dispersion cor
rection perpendicular to the magnetic field reverses itt sign, so that the one
dimensional soliton solutions become stable. 

Such solitons were observed in [4.21]. They were produced owing to the instabili
ty of the electron beam with a small spread in the velocity space. Such solitons were 
clearly absent in the experiment [ 4.18] discussed above. The oscillations were 
observed to be localized perpendicular to the magnetic field, rather than parallel to 
it, and no plasma density wells were found in the localization region. This can be ex
plained by the fact that, instead of a narrow beam, in tokamaks and stellators we 
have a long tail of runaway electrons to the velocity distribution f of electrons, 
which has only one peak. Such a distribution function is unstable with respect to 
amplification of the potential waves with the frequencies w < w8 [4.19, 4.20]. The 
waves propagating towards the tail are intensified owing to the "anomalous" Dop
pler resonance with the electrons whose velocity along the magnetic field is 
"· = (1 + wsliwi)wlk •. The interaction at the Cerenkov resonance for"·= wlk. here 
must be small as is the case owing to the smallness of the derivative apa,. at this 
point. 

The waves propagating in the direction opposite to the tail are damped at the 
"normal" Doppler resonance for"· = (1 - wsl I w i)wl k •. An order-of-magnitude 
estimate of the Doppler resonance increment or decrement is aw(w I w8 ) 2 , where a is 
the ratio of the densities of the particles in the tail and the thermal particles. 
Therefore, if the electron distribution function has a tail, we obtain only the waves 
propagating along the tail and no plasma density depressions. The one-dimensional 
solitons observed in [4.21] contain a standing Langmuir wave in the density depres
sion. The standing wave component propagating in the direction opposite to that of 
the electron distribution tail is not damped at the normal Doppler resonance since 
owing to the narrowness of the electron beam in the veiocity space there are no elec
trons having the appropriate resonance velocity. 

This explanation is substantiated by the following fact observed in [4.21]. When 
the electron beam had a large velocity spread, that is, when damping at the normal 
Doppler resonance became possible, the density depressions were observed much 
less often than in the case of the electron beam with a small velocity spread, though 
these beams exhibited a negligible difference in the Langmuir noise levels. 

Now, let us demonstrate for wP < Ws the possibility of realization of the pro
pagating Langmuir soliton without a density depression localized on a magnetic sur
face or around a magnetic field line. Such a soliton is easily intensified by the tail of 
the electron distribution function, and if there appears the component propagating 
in the opposite direction, this component is damped, so that we do not observe a 
density well due to this component in the presence of the tail of accelerated elec
trons. 

Assuming that w8 is sufficiently high, we can regard the electron motion as one-
dimensional in the hydrodynamic approximation and obtain 

a.. a, "' an e a<(J - + u- = --- + -- (4.53) at az n az m az 
an a - + - (n11) = 0 (4.54) az az 
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(4.55) 

Here " is the electron velocity along the magnetic field which is parallel to the z 
axis. We shall look for the stationary solution propagating along z with a constant 
velocity u, so that all the quantities depend on z - ut = t and r .L. We assume that 
the velocity u is much higher than the. thermal velocity "r• and hence we can ignore 
the pressure in eq. (4.53). Then after integration over z eqs. (4.53) and (4.54) yield 

" = u(l - ..;r-:+:1), 1/; • 2e!p/mu2 (4.56) 

n = n0[1 + N(r .~.)](1 + 1/tt1' 2, n0 = const (4.57) 

Here N is the integration constant which differs from zero only in th~ region of 
localization of the wave and is found from the following condition for the electron 
density averaged over z: owing to their frozenness in the magnetic field the thermal 
electrons are not displaced perpendicular to the magnetic field despite the high
frequency pressure, so that the electron density averaged over z cannot depend on 
r .L • Therefore, we have < n > = n0 , where the angle brackets denote averaging over 
z. Using eq. (4.57}, we obtain now 

N(r.L) = ((1 + 1/;)!h)- 1 - 1 < 0 (4.58) 

But then we obtain that the mean flux of electrons along the magnetic field in the 
soliton differs from zero, that is, the wave entrains the electrons: 

(nP) = -n0uN(r .L) (4.59) 

Owing to conservation of the mean charge in the soliton the mean electric field 
perpendicular to the magnetic field is zero: · 

(V.~. 1/;) = 0, (1/;) = 0 (4.60) 

Finally, substitution of eq. (4.57) into the Poisson equation (4.55) yields the 
soliton equation 

111/t = 2k~[(l + N)(1 + 1/tt112 - 1], k0 • w/u (4.61) 

Let us analyze the system of equations (4.58) and (4.61) for small amplitudes I 1/1 I 
<C 1. Assume that the soliton is localized on the magnetic surface which approx
imately coincides with the plane x = 0, and it declines exponentially with increasing 
distance from this plane. Write d~wn 1/1 as the series 

1/1 = E 1/l'"(x) cosm(k.t + kyy), r "" z - ut (4.62) 
m=l 

For small amplitudes our system of equations can be written as 

111/1 = k5[ - (1 + N)!/1 + ~ "'2 

(4.63) 



139 V. I. Petviashvili 

Assume that 0 > k- k 0 ocC k 0, where k = (k~ + k~1'2 . Substituting eq. (4.62) into 
eq. (4.63) and eliminating 1/12, we obtain from the perturbation theory for the first 
harmonic 1/11 

a21/J 3 
Jco2 axZ1 = A21/11 - 8 1/11. 

A2 • (k2 - k5)kQ2 -c 1 (4.64) 

Amplitudes of the higher harmonics are much smaller than that of the first har
monic and are of the order of 1/Jm- Am. 

Equation (4.64) has the soliton solution localized in the vicinity of the plane 
x=O: 

Y,1 = 2.3A/cosh (Ak~) (4.65) 

This solution is unstable with respect to modulation over y. Therefore, we 
must look for axially symmetric soliton solutions of the system of equations 
(4.58) and (4.61), which are periodic in z, namely, Y,=Y,(t, r.L), N=N(r.L), 
where the principal wave number k, satisfies the condition 0 < k,- k 0 ~k0 • Since 
the theory of perturbations is not applicable here, we shall find the solution with 
the stabilizing factor method [4.5]. Owing to high magnetic pressure the plasma 
density averaged over oscillations is independent of the coordinates even if the 
high-frequency pressure is comparable to the plasma pressure. 

Thus, we obtain the axially symmetric two-dimensional soliton without plasma 
density depression, which oscillates along z with the principal wave number k, 
and propagates with the velocity u. The fundamental soliton frequency is 
w = k,u > wp, the oscilations of the dimensionless potential 1/1 are such that for 
A2 = (k; - kf)k(/ ::5 1 the transverse wave number is of the order of Akz and, 
hence, the soliton radius is of the order of II Ak, [4.18]. 

According to the quasilinear or weak-turbulence theory, the waves with dif
ferent wave vectors have different frequencies owing to spatial dispersion, and 
therefore the turbulence spectrum is wide and the wave packet always spreads 
out. Build-up of the Langmuir waves by the tail of fast particles was analyzed within 
the framework of the quasilinear theory in [4.22]. 

This approach is valid if the noise level is low. Over a certain energy density 
threshold nonlinear self-matching of the wave phases is started which is typically, 
evidenced by narrowing of the frequency spectrum and self-localization of the wave 
packets. While in the case of weak turbulence the predicted spectrum width is of the 
order of the fundamental frequency itself, in the case of strong nonlinearity this 
width is much smaller. Therefore, the phenomena observed with Uragan-2 are not 
explained by the weak -turbulence theory. A considerable proportion of the ac
celerated electrons are produced only at individual resonance magnetic surfaces or 
field lines, where the electrons are accelerated owing to the development of the 
MHO helical instability. Owing to the anomalous Doppler effect these electrons 
amplify the Langmuir waves which would spread all over the plasma but for the 
self-localization effect which gives rise to solitons localized in the instability region. 
The energy density in such solitons can be compared to the plasma pressure; this 
facilitates effective pumping of the longitudinal energy of the escaping electrons to 
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the transverse mode. There are many trapped electrons for such a high energy densi
ty in the soliton. This indicates a need for a nonlinear theory of instability for the 
anomalous Doppler resonance, which can be developed by analogy to the theory of 
trapped electrons in the monochromatic Langmuir wave. Such a theory will yield 
estimates of the anomalous resistance and give a more complete picture of reconnec
tion of the field lines. 

The tail of the electron distribution function in the magnetized plasma is a much 
more natural and frequent phenomenon than the electron beam which is, typically, 
produced with a special device. Usually, the tail is responsible for a considerable 
part of the electric current with the anomalously low resistance, thus strongly affec· 
ting the hydrodynamic properties of the plasma. Therefore, further efforts are 
needed to study the interaction between the runaway electorns of the tail with the 
solitons analyzed above, which occurs also at the resonances with multiple cyclotron 
frequencies, apart from the resonance discussed above. 

4.6. Solitary Vortex in 
Nonuniform Plasma 

Drift waves can propagate in the plasma which is nonuniform in the direction 
perpendicular to a constant magnetic field. These waves can be easily amplified by 
either a current or an electron beam, or an ion temperature gradient, or dissipative 
effects [4.20]. It has been shown in [4.23] that at the nonlinear stage of evolution of 
this branch there appear two-dimensional solitary vortices localized perpendicular 
to the magnetic field. These vortices strongly increase the heat conductivity of the 
plasma as the convective cells in a liquid do. The vortex radius decreases with in
creasing amplitude and tends to the Larmor ion radius r8 • Therefore, the 
finite-amplitude vortexes are insensitive to the magnetic field shear, and we can 
describe them assuming that the magnetic field is constant. 
The waves in plasma with the frequencies below w8 and the phase velocity along 

e 
the magnetic field lower than both the thermal velocity of electorns and the Alfven 
velocity are described by the electric potential <P in which electrons have the 
Boltzmann distribution. In a plasma of a sufficiently high density the electron densi
ty is equal to the ion density and given by 

n = Nexp (e.p/T J (4.66) 

Here· N and T0 are assumed to depend on the coordinate x perpendicular to the 
magnetic field. 

The phase velocity of the wave is assumed to be higher than the thermal velocity 
of ions. Then the ions are described by the hydrodynamic equation 

dv e I 
- = --V.p + [v X Ws.]- -VnT 
dt m 1 nM 1 

(4.67) 

We shall assume that the wave frequency is much lower than w8 i and that the ion 
velocity along the magnetic field parallel to the z axis is negligibly small. Then we 
can obtain a solution of eq. (4.67) in the form of a series in powers of (1/wsi)(d/dt). 
The first terms of the series give the following expression for the ion velocity com-
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ponent perpendicular to the magnetic field: 

(4.68) 

Here ri = T0/mwii' 1/t = e.p!T0, and T0 is the electron temperature in the plane of 
propagation of the axis of the sought vortex, which is given by the equation x = 0. 

The system of equations (4.66) and (4.68) is closed with the continuity equation 
which can be written in the form 

din n d' 0 ~+ lVV..L = (4.69) 

Here we again ignore the ion velocity along the magnetic field. Substitution of eqs. 
(4.66) and (4.68) into eq. (4.69) yields the following equation for 1/t: 

:.i :t ( fi~!/t - Vt) + ri [ V!/t X V ( fi~!/t - In N - ~: 1/t)] • = 0 

az az 
~ = ax2 + oy2 ' 

T0 = T. (0) (4.70) 

This equation was derived and analyzed in [4.24] for the drift waves with a 
statistical method for T. = const. The equation describes in the linear approxima
tion the drift waves propagating along y with the drift velocity 

(4.71) 

If T. and N are independent of the coordinates, eq. (4.70) has a stationary solution 

~1/t = F(!/t), ol/ttot = o (4.72) 

where F is an arbitrary function. This indeterminacy typical of ideal liquid is 
eliminated for v. =1= 0. Then, if we take o/ot = -uo/oy, where u is the constant 
velocity of propagation of the vortex, we obtain from eq. (4. 70) after integration 
over y 

ri~l/t = Azl/t - g!/tz, Az • 1 - "•/u 

aT.;ax 
g • -wB; ri --"" o(ln nta(In.N2) (4.73) 

2T0u 

Equation (4.73) has the following soliton solution depending on the radius r: 

Az 
1/t = -f<e>. g 

e • Ar!rs, r2 • x2 + (y - ut)2 

Equations (4. 73) and (4. 74) indicate that f satisfies the soliton equation 

(4.74) 

1 a of ' 
Q' oe e oe = f- J2 (4. 75) 

whose solution is given in Fig. 4.4. 



142 4. Solitary Waves and Vortexes in Plasma 

Fig. 4.4. The drift soliton. 

The motion of ions along the z axis was analyzed in [4.23] and it was shown to 
result in a small slope of the soliton solution (4. 74) to the magnetic field in the plane 
(y, z). It was also shown that the one-dimensional soliton solution of eq. (4.70) is 
unstable. 

The fact that the drift soliton appears only in the presence of a temperature gra
dient and that, according to eq. (4.68), the plasma in it rotates as in a vortex implies 
that this soliton is a convective vortex. It can exist in the presence of only a gradient 
of T. without a density gradient if Ti -c T •. 

The kinetic treatment would yield an equation for the dependence of the vortex 
amplitude A on time and the instability increment with respect to amplification of 
the drift wave. 

Note a recently derived equation [4.25] describing the vortexes in a shallow 
rotating atmosphere, and in particular, the Great Red Spot of Jupiter. This equa
tion is very similar to the drift vortex equation given here. 
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5. Observation of 
Langmuir Solitons 

M. V. Nezlin, D. Sc. (Phys. and Marh.) 

Introduction 

In the recent years physicists became deeply interested 
in the fascinating nonlinear wave structures, known as solitary waves or solitons. A 
soliton is a wave packet in which the wave field is localized in a limited (generally 
propagating) spatial region and is absent outside this region. Soliton, however, dif
fers fundamentally from the classical wave packet which, being a linear formation, 
is known to spread out rapidly owing to the variation of the group velocity in the 
whole wavelenth range of the packet. Soliton is essentially nonlinear; the (linear) 
dispersion of the group velocity in it is exactly compensated by the reverse 
phenomenon, namely, nonlinear self-compression of the wave packet, and 
therefore the soliton propagates without spreading out and conserving its shape. 

Thus, the soliton is a nonspreading, nonlinear wave packet in which the phases 
and amplitudes of the waves are appropriately self-consistent [5.1-3]. 

It would seem natural to regard exact mutual compensation of dispersion and 
nonlinearity as being hardly probable and soliton as being a product of the 
theorists' imagination, rather than a real phenomenon. But, strange as it may 
seem, numerous theoretical studies and calculations and some (as yet few) ex
periments definitely demonstrate the existence and wide occurrence of solitons. 
Moreover, physicists are increasingly coming to the belief that solitons may play 
an essential part in such different fields as physics of elementary particles, solid 
state physics, hydrodynamics, astrophysics, nonlinear optics, plasma physics, and 
even biology [5.3-6]. The soliton is a fundamental part of the system of concepts 
of a new science known as "synergetics" [5.7); special conferences on the soliton 
have been held [5.4b, 5.6, 5.8). Sometimes it can be heard [5.4b] that in physics 
of nonlinear waves the soliton has the same position as the linear oscillator in 
classical physics (such extreme opinions are, possibly, inspired by the current 
fashion). 

The history of solitons starts about 150 years ago with the famous Scott
Russel's observation in an English canal in 1834 [5.3, 5.4]. Korteweg and deVries 
were the first to introduce solitons into theory in 1895 [5.9]. A vivid example of 
solitons in nonlinear optics is the observed transformation of a laser beam in a 
dispersive medium into a sequence of wave bunches, that is, solitons [5.10, 5.11]. 

Solitons were first introduced into plasma physics, apparently, in [5.12]. Now 
we can identify a number of areas in plasma physics which definitely involve or 
can involve solitons. They include plasma turbulence, relaxation of beams of 
chared particles and laser beams in plasma, formation of energy distribution of 
particles which are optimal for plasma chemistry, anomalous plasma resistance, 
self-compression of high-intensity waves, namely, the Langmuir, lower hybrid, 
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drift and other waves (and, respectively, heating of plasma with these waves and 
anomalous diffusion of plasma in the magnetic field), nonlinear phenomena in 
space plasma, and so on. Even this brief list demonstrates that experimental 
studies of solitons in plasma are not only of fundamental scientific interest but 
have also a considerable practical significance, particularly, for development of 
the plasma thermonuclear reactors of the tokamak or stellator type in the im
mediate future. 

Here we shall discuss the experimental results on the solitons produced from 
the Langmuir waves and the so-called oblique Langmuir waves with large 
amplitudes in plasma in a strong magnetic field. But first we shall present the 
main theoretical concepts which will be needed for interpreting the experimental 
data. 

5.1. Langmuir SoUtons 
(Review of Tbeoredcal Results) 

The Langmuir solitons are produced owing to self-compression of the 
Langmuir waves, that is, in the process which is the reverse of the spreading of 
the linear wave packet. This self-compression is a kind of instability known as 
the modulational instability [5.13-15]. We shall illustrate the physical meaning of 
the modulational instability by the case of one-dimensional wave packet whose 
length L is large in comparison with the wavelength, L > ~ = 2'Kik. If the packet 
were linear (that is, had a small amplitude), the rate of its spreading would be 
determined by the dependence of the group velocity "1 on the wave number k: 
aL;at = I a,,;ak j2x, where 2x = 4'10/L ~ k is the interval of the wave numbers 
of the packet. The characteristic time of spreading is r = 
Ll(aL!at) = T/(8,1 /ak)x2• If the dispersive wave packet is nonlinear (that is, if 
the wave frequency depends on the wave amplitude E0), then under certain con
ditions the packet stops spreading and even undergoes self-compression or col
lapse [5.14]. The mechanism of this effect is related to the ponderomotive force 
of the dynamic pressure pushing plasma out of the region with an increased 
strength of the high-frequency field of the wave. If such a region appears as a 
result of fluctuation, it partially traps the wave and the field strength in this 
region is increased still further; this leads to further pushing out of plasma, that 
is, to deepening of the "well" of the plasma density, an so. Thus, if fluctuation 
of the field occurs in a region whose spatial scale corresponds to the 
characteristic wave number x, the wave proves to be modulated with the spatial 
period 2T/x. In other words, under certain conditions conversion of 
monochromatic wave into a spatially modulated wave proves to be energetically 
favourable. This effect is known as the modulational instability or self
compression of the wave packet. After appearance of this instability the wave 
field may develop in two directions. If self-compression of the wave at a certain 
stage is balanced with dispersion, the soliton is formed; if it is not balanced, the 
wave will collapse until it is absorbed by the plasma particles or converted into 
other waves [5.1, 5.2, 5.14]. The direction of the wave evolution depends on the 
geometry of the system, and the characters of dispersion and nonlinearity. In the 
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discussion below we shall always assume that the system has the plane t~cmnctry, 
(linear) dispersion of waves is expressed by 

3 "'• = "'P + -(kro)2wP (~.1) 
2 

and nonlinearity [5.1] by 

(5.2) 

where a is a coefficient, k is the wave number, "'P = (411'nge2/m)1' 2 is the 
Langmuir frequency, r0 = (T /411'nge2)1' 2 is the electron Debye radius, n0 is the 
plasma density, Te is the electron temperature, and E0 is the amplitude of the 
electric field of the wave. Under the given conditions the Langmuir wave field 
which was initially spatially uniform will break down into a series of Langmuir 
solitons under the effect of the modulational instability [5.15]. The conditions of 
the modulational instability have the form [5.1, 5.2] 

and 

OVg 0 a-< 
ok 

(5.3) 

(5.4) 

The first of these conditions (the Lighthill criterion) is satisfied for the Langmuir 
waves with any amplitude since the nonlinear addition to the Langmuir wave fre
quency [see eq. (5.2)] due to the ponderomotive force of the high-frequency 
dynamic pressure is a£1 = -w.,£113211'n0Te < 0, while the derivative ov/iJk = 
= 3w{i, > 0. The Lighthill criterion (5.3) follows from the so-called nonlinear 
parabolic equation [5.1] which is used to analyze the stability of wave packets. 
This criterion is applicable only if the concept of the wave packet is applicable, 
that is, if the size L of the wave formation is much greater than the initial 
wavelength X or if x <C k; the condition for the wavelength has the form 
kro < (1/3)(m/M)I'z. 

Condition (5.4) implies that in the wave the electric energy density W0El11611' 
should be higher than a certain threshold value: 

W0/n0T0 > 3(xr0 )212 (5.5) 

In the Langmuir soliton due to the modulational instability the high-frequency 
dynamic pressure force pushing out plasma from the density well is counter
balanced by the excess thermal pressure of plasma due to formation of the densi
ty well; therefore, the depth of the well is given by 

onln0 :: W/nTe (5.6) 

The distributions of the electric field E(x), the wave electric energy density 
W(x) - £2(x) and the plasma density perturbation on(x) along the soliton have 
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the form of a bell-like curve close to the Gaussian distribution: 

E(x) = E0cosh-1(koX) 

W(x) - W(x) = E1 cosh-2(koX) 

on(x) = on cosh-2(koX) - W(x) 

Here x is the longitudinal coordinate. The characteristic width of this distribution 
at the level of lie of the amplitudes of E0, E1 and on, known as the soliton 
width ..:1, is [5.1, 5.15, 5.24] 

3.3 (60nT) 112 (60n) 112 

..:1£,., To""' 'n ----w- = 'n on 

2.2 (30.T) 112 (30n) 112 

..:1.=..:1£2""'-""'n -- =ro -
K0 W on 

(5. 7) 

In constrast to [5.1], we have assumed here that Te • T> Ti, where Ti is the ion 
temperature (in [5.1] it was assumed that Te = Ti = T, so that onln = W/(2n1), 
and the soliton width in this model was greater than the width found from eqs. 
(5.7) by a factor of 2112). The width ..:1 characterizes the packet size at which the 
nonlinear self-compression of the packet is counterbalanced with dispersive 
spreading. 

When comparing theoretical predictions with experimental results, we shall use 
both expressions (7) for the soliton width depending on what parameter is 
measured in the experiment: the width ..:1£ will be determined from the 
oscillogram of the field E indicator (the high-frequency probe), and the width ..:1. 
will be determined from the oscillogram of the plasma density indicator (the 
diagnostic resonator). 

The Langmuir soliton discussed above, that is, the self-compressed wave 
packet whose size is greater than the wavelength, 

(5.8) 

appears owing to the long-wave modulational instability (x < k) and is known as 
the envelope soliton. This soliton is characterized by a relatively large size and 
low intensity of oscillations: 

w on m 
-= -~ (xro)2 < (kro)2 <
nT n M 

(5.9) 
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Herem and Mare the masses of the electron and the ion. A considerably more 
interesting phenomenon is the large-amplitude Langmuir soliton which appears 
when 

WlnT> (krr)f (5.10) 

that is, in the case of short-wave modulational instability, known in Americal 
literature as the oscillating two-stream instability (OTSI) (x > k). The size of this 
soliton is smaller than the initial wavelength: 

A<>. (5.11) 

Everything that was said about the envelope soliton is applicable to this soliton, 
apart from the Lighthill criterion (5.3) which is not applicable to the large
amplitude soliton. 

The following facts should be noted for the velocity of the Langmuir soliton. 
Firstly, according to the theory [5.1, 5.2, 5.15], the soliton velocity cannot ex
ceed the ion sound speed c5• Secondly, the mechanism of formation of the 
Langmuir soliton is related to formation of a standing wave and its localization 
in plasma [5.16, 5.17, 5.22]. Thirdly, a propagating soliton must be rapidly stop
ped by plasma particles [5.18, 5.19]. Therefore, experimental studies of solitons 
which are at rest or stopped moving in plasma are of the greatest interest. We 
shall bear this in mind when describing the experimental results. Incidentally, eq. 
(5.6) is valid only for slow solitons whose velocity is much lower than the ion 
sound speed. 

Thus, we can formulate the following (conventional) defmition of the 
Langmuir soliton: it is plasma density well "filled" with the Langmuir oscilla
tions or, simpler, a density well with a "Langmuir filling". 

5.2. Langmuir SoUtons 
(Experimeatal) 

The experiments ori Langmuir solitons can be classified into two groups. The 
first group includes the experiments with the following essential features 
[5.20-23]: firstly, no magnetic field is applied, and secondly, the plasma in the 
experimental installation exists in a medium with a relatively high concentration 
of neutral atoms (argon, the pressure Po • 1 to 2 x t()-4 mm Hg) and therefore is 
highly collisional. The frrst of the above features provides for certain procedural 
advantages (for instance, makes it possible to measure the soliton parameters by 
means of "probing" of plasma with an electron beam) but does not allow us to 
study the properties (stability) of solitons in magnetized plasma. Owing to the se
cond feature, the time of scattering r e of the plasma electrons with respect to the 
loss of momentum in collisions with neutral atoms proves to be negligibly small 
in comparison with the "time of flight" of the soliton and even the passage time 
of the ion sound in the system (r5 = LlcJ. Under such conditions the Langmuir 
soliton (whose velocity is always lower than c5 or even close to zero, as noted 
above) travels a very short distance during the time re. Therefore, after external 
"pumping" of the Langmuir waves (external pumping by high-frequency field 
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[5.20, 5.21] or electron beam [5.22, 5.23]) has been discontinued, the soliton just 
have no time to move during the time of collisional decay of the waves (approx
imately Te of the order of several microseconds), that is, it proves to be practical
ly unobservable. Under such experimental conditions the question about the pro
perties (stability) of a free soliton (existing without "pumping") remains open. 

The second group includes the experimental studies [5.24-26] distinguished by 
the collisionless regime of a strongly magnetized plasma [Te lll> T5; wH lll> wp, where 
wH = eH!mc, and wP = (4Tne2/m)1' 2 are the Larmor and Langmuir frequencies, 
respectively]. Another distinguishing feature of these experiments is that they are 
performed in moving plasma in order to make possible the recording with sta
tionary devices of the "most interesting" solitons, that is, those that are not 
moving or are stopped with respect to the plasma. Two techniques were used in 
these experiments for generation of the Langmuir solitons: either with the exter
nal high-frequency electric field (produced with a "pumping resonator") [5.24] or 
with the electron beam [5.24-26]. 

Here we shall review the main results obtained in the experiments of the se
cond group [5.24-26]. Two modifications of the experimental installation were 
used in these studies. One of them was used for the excitation of the Langmuir 
waves by the external high-frequency electric field and by the electron beam. 

(a) 

(b) 

Fig. 5.1. Experimental setup: (a) first modification; 
(b) second modification. 
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The first modification (see Fig. 5.Ia) comprised the following components: the 
solenoid 9 250-cm long which produced in the experiments approximately 
uniform magnetic field H = 2 X 103 Oe, the vacuum chamber with the diffusion 
pump 1, the discharge chamber 12 in which plasma was produced by passing an 
electron beam from the electron gun through the gas (hydrogen) fed into the 
chamber, a series of diaphragms comprising the so-called gas delay unit 3 with 
the length of 80 em, in which the plasma moving along the magnetic field (with 
the velocity about cJ is freed of the neutral gas for a time sufficient for conduc
ting the experiment [5.24], the plasma column 11 with the diameter of 3-4 em, 
the beam collector 8, the working volume with the length L "" 100 em, which 
contains two quarter-wave resonators-the pumping resonator 4 and the 
diagnostic resonator 5 (the working openings of the resonators are covered with 
mesh grid of 95o/o transparency), two high-frequency generators connected to 
these resonators, a pair of "modulating" grids 6, the high-frequency probe 7 and 
the selective tunable receiver P5-20 for recording the Langmuir oscillations, and 
three pulsed power sources-two (independent) for controlling the electron gun 
and one for controlling the pulsed valve for feeding gas to the discharge 
chamber. The plasma was produced in the discharge chamber with pulsed 
hydrogen feeding by means of the pulsed (10-20 p.s) electron beam with the elec
tron energy of 0.5 to 2 keV and the current of tens to hundreds of milliamperes. 
The plasma flowed from the discharge chamber along the magnetic field and 
about 50 p.s after the end of the electron beam pulse, having passed the gas delay 
unit, it got into the working volume where it continued to travel with (approx
imately) the ion sound velocity cs a. 2 x 106 cm/s. The gas pressure in the work
ing volume (in the flowing plasma regime) was about 3 x 10"6 mmHg (and re
mained at this level for about 10 ms after plasma had flowed). The electron 
temperature (measured with the Langmuir probe) was Te""' 10 eV, the typical 
plasma density was n = 3 x 10' cm·3, r0 ""' 3 x Io-2 em. 

The electron beam used for generating the Langmuir waves in the plasma was 
operated independently from the electron beam which produced the plasma; its 
parameters were independent and the pulse duration was approximately equal to 
the plasma pulse duration, the beam diameter was 3 em, and the electron 
number density in the beam was n1 "" (1 to 3) x 107 cm·3 s 10"2 n. In this ex
perimental series, when the plasma wave excitation by the electron beam was 
used, the pumping resonator was still placed in the way of the plasma flow 
though the pumping generator was not operational; the resonator just provided 
for self-modulation of the beam at the fixed frequency f = 500 MHz = /p, which 
facilitated recording of solitons with the P5-20 receiver which was tuned to this 
frequency. This resonator determined the beginning of the working volume. The 
plasma with the above parameters was magnetized (wH > wJ and collisionless 
(Te > Ts = LlcJ [5.24]. The absence of collisions was an absolutely necessary con
dition of the experiments [5.24] with generation of the Langmuir solitons with 
the external high-frequency field, because the pumping resonator operated with 
single pulses of short duration (about 1-3 p.s), which was much shorter than the 
time of subsequenty observation of solitons. 
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The second modification of the installation (see Fig. 5.1b) differed from the 
first primarily in the character of the velocity distribution of the electrons in the 
beam. In the first modification of the installation (Fig. 5.1a) the electron beam 
entered the working volume after having passed the plasma column and 
(therefore) the electron velocity distribution was strongly spread out. In the se
cond modification the discharge chamber of the plasma source was at the end of 
the installation opposite to the electron gun. In this case the plasma flowed 
toward the beam and the electrons entering the plasma when it had reached the 
working volume could be regarded as monoenergetic. This change of the ex
perimental conditions proved to be essential and greatly facilitated observation of 
the Langmuir solitons. Another useful alteration was made in this modification 
of the installation, namely, the diameter of the beam and the plasma was in
creased approximately twice (up to 6 em), owing to the decrease in the magnetic 
field in the working volume by a factor of 3.5 with the same cathode diameter of 
the electron gun. The duration of the electron beam pulse was 500 p.s and all 
measurements were performed during the pulse. The energy of the electrons in 
the beam was W1 = 200 to 1000 eV, the current was I= 50 to 80 rnA, the elec
tron number density was n1 ""' (1 to 2) x 107 cm·3 :S w-z n, and the magnetic field 
was H = 500 to 1000 Oe. The plasma speed v in these experiments was as low as 
4 x lOS cm/s, that is, it was just a fraction of the ion sound speed c5 in contrast 
to the first modification of the installation where the plasma speed v""' c5 • 

Now let us briefly discuss the diagnostics and experimental procedures. The 
plasma density, its variation with time and the density wells associated with 
solitons were determined with the resonator technique [5.24-26]. We shall not go 
into the details of the technique. Note only that the diagnostic resonator serving 
as the plasma density indicator (5 in Fig. 5.1) had the Q factor value of about 
250, the width of the resonance curve was about 5 MHz, and the operating fre
quency was about 750 MHz, which was considerably higher than the fundamen
tal frequency of the pumping resonator and the frequency/, = w/211" """ 500 MHz 
of the Langmuir plasma oscillations under consideration; there was no coupling 
between the resonators, which could result in their influencing each other. 

A high-frequency probe was used for determining the relative strength of the 
electric field of the Langmuir oscillations. The working surface of the probe was 
the 0.1 mm tungsten wire grid with the diameter 6 em and the mesh size 
2 x 2 mm2• The probe (Fig. 5.1) was placed into the plasma flow with its surface 
perpendicular to the magnetic field H. Therefore, the probe primarily detected 
the waves with a large electric field components parallel to H, that is, the 
Langmuir waves in this case. The signal from the probe was measured by means 
of two independent techniques. In the first technique the signal was fed via a 
coaxial cable to the 75-0hm input of the selective tunable receiver (PS-19 or 
PS-20 type), the detected signal from the output of the receiver was fed to an 
S1-42 storage oscillograph and then photographed. The receivers made it possible 
to identify a fixed frequency within the 0.8 MHz band in the 250-1000 MHz 
range. In the second technique the signal was fed to a detector with the 
50-1000 MHz working frequency range and then to an U3-7A wide-band 
amplifier, we shall refer to such a signal as the integral signal since it comprises 
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practically all high-frequency oscillations, rather than those at one selected fre
quency. In both techniques the oscillogram of the signal from the high-frequency 
probe represented the time dependence of the envelope of the oscillation 
amplitudes. 

No absolute measurements of the electric field of the Langmuir waves were 
performed in this study. In principle, they are not necessary since the quantity 
Wo /1611" in the soliton is determined by the density wellfm/n as can be seen from 
eq. (5.6). In the experiments of the frrst group discussed above [5.20-23] where 
no external magnetic ·field was applied, the absolute measurements of the electric 
field were done with the electron beam perpendicular to the magnetic field. In 
the experiments described here [5.24-26] this method was inapplicable owing to 
the presence of a strong magnetic field. 

Excitation of the Langmuir waves with the high-frequency field was performed 
by means of the quarter-wave pumping resonator (4 in Fig. 5.1). This resonator 
is similar in the design to the diagnostic resonator but its fundamental frequency 
is much lower. It was excited by a pulse generator of decimetre waves with the 
frequency IE = 495 MHz; the plasma density was chosen for the field frequency 
IE to be sufficiently close to the Langmuir electron frequency. The resonator was 
excited by means of a loop placed at the antinode of the magnetic field in the 
resonator. The excited electric field had the maximum strength in the resonator 
gap and its direction was parallel to the external constant magnetic field H. The 
·generator pulse duration was 1 p.s, and the pumping intensity was several watts. 

To trap the oscillations at the pumping frequency in the plasma, the initial 
density of plasma was chosen so that IE Sip· The nonlinear wave packet (soliton) 
generated in this way passed with flowing plasma by the high-frequency probe 
(7 in Fig. 5.1) and the diagnostic resonator 5; the probe and the resonator were 
fixed to each other (with the spacing of 3 em) and could be shifted together 
along the installation. This arrangement was convenient for observing the 
solitons localized in the plasma, as the soliton travelling with the plasma was 
easily detected by the electric field pulse from the high-frequency probe and the 
respective signal from the diagnostic resonator which indicated the plasma densi
ty. Since we knew the plasma speed we could easily convert the time 
characteristics of the soliton localized in the plasma into the spatial parameters. 

We shall start the discussion of the experimental results from the experiments 
on pumping of the plasma waves with the external high-frequency electric field. 
First, the following fact should be noted. Clearly, it is very difficult to make the 
pumping frequency to coincide with the frequency of the excited Langmuir wave 
which, according to eq. (5.2), strongly depends on the wave amplitude. 
Therefore in the experiments with external pumping of the high-frequency waves 
in plasma there was made an artificial density well, that is, a local density 
nonuniformity (by means of two grids 6 in Fig. 5.1). When such a well region 
flowed together with plasma through the pumping resonator, the high-frequency 
field pulse was applied. At the moment, on the varying plasma density proflle 
there were two points of resonance between the pumping field frequency and the 
plasma oscillations frequency; one such point was at the leading front of the ar
tificial plasma density well and the second one was at its back front. Since the 
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Fig. 5.2. Oscillogram of the signal from the high-fre
quency probe (at the top, downward deflection) and schematic of plasma density 
variation with time (10 p.s per interval). 

density well was spreading with the motion of the plasma, the speeds of these 
points relative to the installation were different-the leading front of the well 
had a higher speed than the entire plasma, and the back front had a considerably 
lower speed. 

Figures 5.2 and 5.3 present the results of the experiments on pumping of the 
plasma waves by the external high-frequency fields. In Fig. 5.2 the lower curve is 
the schematic of the oscillogram of the signal from the diagnostic resonator (we 
do not present here the actual oscillogram so that not to be distracted by the 
purely diagnostic details the discussion of which can be found in [5.24]); it shows 
the variation with time of the dinsity of the flowing plasma (upward trace deflec
tion). The upper curve (downward trace deflection) is the oscillogram of the 
detected signal from the high-frequency probe at the Langmuir electron frequen
cy I= 492 MHz ""lp (the plasma density n "" 3 x 10' cm-3). Pulse 1 presents the 
Langmuir oscillations at the end of the pulse of the primary beam producing the 
plasma, 2 is the pulse of the pumping resonator at the frequency 
IE= 495 MHz ""'lp• and 3 and 4 are the pulses of the high-frequency probe at the 
distance .:lz = 15 em from the point of pumping. It can be seen that pulses 3 and 
4 are localized at the leading front and back front of the moving artificial densi
ty well. Under different conditions [5.24] pulse 4 corresponding to the back front 
of the well is also observed in the absence of pulse 3. Therefore, field bunches 3 
and 4 are independent solitary Langmuir waves which exist for a long time 
without noticeable spreading. For instance, field bunch 4 exists for more than 20 
p.s in the plasma after high-frequency pumping has been discontinued; this time 
is more than 10' periods of the Langmuir oscillations and the bunch travels in 
this time not less than several tens of centimetres with the plasma (with the local 
speed of the back front of the density well). But the width of field bunch 4 (the 
product of the pulse duration by the speed of the plasma at the back front of the 
well v"" 1 x 106 cm/s) is not more than 0.7 em (.c1E"" 20ro). This wave formation 
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Fig. 5.3. Oscillogram of the signal of the high
frequency probe for Az = 5 em (a) and Az = 10 em (b). Figures denote mutually 
corresponding plasma density wells and high-frequency field bunches (10 p.s per 
interval). 

cannot be a linear wave packet; otherwise, as noted in Sec. 5.1, it would spread 
out at distances of the order of its own width [5.24]. The duration of pulses 3 
and 4 is of the order of 103 periods of the Langmuir oscillations; hence, they are 
the envelope of the amplitudes of the Langmuir waves, that is, the solitary 
waves with the "Langmuir filling". 

Proceeding from the above discussion, we can regard field bunches 3 and 4 as 
the Langmuir solitons. The width of the soliton localized at the back front of the 
density well is smaller than the plasma column diameter by a factor of 5 to 6, 
that is, the soliton can be regarded as being approximately one-dimensional. 

Figure 5.3 illustrates the character of soliton evolution during the passage 
along the installation (a for the distance between the pumping resonator and the 
observation point .:1z = 5 em, and b for .:1z = 10 em). It can be seen that the field 
bunch localized at the back front of the density well grows and is observed pro
portionately later with increasing distance from the pumping resonator. This im
plies that the characteristic length of soliton formation from the Langmuir waves 
is of the order of 10 em, and the characteristic time of soliton formation is of 
the order of several thousand Langmuir periods (The uneven shape of pulse 4 in 
Fig. 5.3 indicates that it represents, most probably, 2 to 3 solitons, rather than 
one.) 

Another experiment was performed with the use of modulating grids 6 (Fig. 
5.1) which produced the plasma density well in the above experimental series. 
The voltage pulse fed to these grids allows us to obtain a short-duration electron 
beam in the plasma. Under certain conditions this beam produces the Langmuir 
solitons. Moving the high-frequency probe away from modulating grids 6, we 
can analyze the character of soliton propagation along the magnetic field. The 
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Fig. 5.4. (a) The delay T in the appearance of a high
frequency field bunch at the probe as a function of the displacement of the 
probe along the installation. (b) The electric field amplitude of the bunch as a 
function of the distance it has travelled, z • .&z. 

results are shown in Fig. 5.4 which presents the delay in the appearance of the 
high-frequency field pulse at the probe as a function of the displacement of the 
probe along the working volume. It can be seen that the field bunches freely 
travel not less than SO em in the installation in about 40 p.s. In other words, the 
lifetime of the field bunches amounts to at least 2 x 10' periods of the electron 
plasma oscillations. The field bunches observed at large distances form the entry 
to the working volume typically have higher magnitudes and smaller width than 
those observed at small distances. Figure S.4b shows the amplitude A_ of the 
electric field in the field bunches (relative units) as a function of the distance it 
has travelled in the system. 

It should be stressed that in the experiments with high-frequency pumping of 
the plasma waves discussed above the plasma density wells corresponding to the 
Langmuir solitons were not identified in the oscillograms of the variation of the 
plasma density with time owing to the procedural reasons [5.24]. The presence of 
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Fig. 5.5. (a) Oscillograms of the integral signal of the 

high-frequency probe (upper, downward trace deflection) and the signal of the 
diagnostic resonator (lower, upward trace deflection); 10 p.S per interval. The 
plasma density n = 1.8 x 101 cm·3, the observed oscillation frequency/= 350 
MHz, the energy of the beam electrons W1 = 900 eV. (b) Correspondence be
tween the field bunches and the density wells after the displacement of the lower 
oscillogram iii. Fig. 5.5(a) by 6 p.s to the left (the approximate transit time of the 
plasma). 

both attributes of the Langmuir soliton, namely, the plasma density well and its 
high-frequency filling, was demonstrated in the experiments on excitation of 
solitons by the electron beam, which are discussed below. 

The most interesting results on the beam excitation of solitons were obtained 
with the experimental installation of the second modification (see Fig. 5.lb); the 
monoenergetic electron beam proved to be an incomparably more reliable source 
of Langmuir solitons with distinct and sufficiently deep density wells that the 
beam with a spread-out velocity distribution [5.25]. Therefore, we shall first 
discuss the experimental results obtained with the installation shown in Fig. 5.1b. 
These results show that the Langmuir waves excited by the electron beam in 
plasma are a series of solitons, that is, the Langmuir wave field bunches 
associated with deep plasma density wells (onln = (3 to 30) x to-2). The solitons 
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Fig. 5.6. Oscillograms of the integral signal of the 
high-frequency probe (upper) and the signal of the diagnostic resonator (25 1,~ 
per interval). The plasma density n = 1 X 101 cm-3, W1 = 900 eV. The intensity 
peak in the oscillation spectrum is at the frequency 300 to. 350 MHz. For the 
deepest density wells we have fmln = 0.3. The signal cut-off at the end of the 
oscillograms is due to . discontinuation of the beam. The density wells in the 
lower oscillogram correspond to downward deflections up to the smooth peak 
and to upward deflections beyond the peak. 

are localized in the plasma, that is, they are at rest (in the first approximation) 
with respect to the plasma; if they are moving relative to the plasma, their speeds 
are much lower than the ion sound speed c5• These results are illustrated with 
Figs. 5.5-7 which show and compare the simultaneous oscillograms for the 
signals of the plasma density indicator (the lower one) and for the envelope of 
the electric field amplitude of the Langmuir waves. Sharp deviations, both up
ward and downward, can be seen in the oscillograms for the plasma density in
dicator. These deviations correspond to rarefaction ("density wells") and com
pression of plasma ("density bunches"). Ignoring the details of operation of the 
diagnostic resonator (they are discussed in [5.24, 5.25]), we shall note the follow
ing general rule: in the rising part of its oscillogram and in the plateau region of 
the (smooth) maximum the downward deviations correspond to the density wells 
and the upward deviations correspond to density bunches; in the declining part 
of the oscillogram (following the signal maximum), on the contrary, the upward 
deviations correspond to density wells and the downward deviations correspond 
to density bunches. To establish the correspondence between a specific plasma 
density well and a specific high-frequency field pulse for the sought Langmuir 
soliton we should take into account the fact that the indicators of the field and 
the plasma density were at the distance of 2 em from each other (see Fig. 5.1); 
the plasma travelled this distance in 5 to 6 ,.,.s. Therefore, if the soliton is localiz
ed in the plasma, then the signal of its density well should appear in the 
oscillogram 5 to 6 p.S later than the signal of the high-frequency field of the 
soliton. The data in Figs. 5.5a and b confirm this delay. Indeed, if, for instance, 
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Fig. 5.7. Oscillograms of the same signals as in Fig. 
5.6. (a), (b) 10 p.5 per interval, n = 4.2 x 101 cm-3, f= 550 MHz, W1 = 900 eV. 
(b) Comparison of the above oscillograms after displacement of the lower one by 
5 p.s to the left. (c) 5 p.s per interval, W1 = 900 eV, no displacements of the 
oscillograms. 
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in Fig. 5.5a we shift the lower ("delay") oscillogram to the left by the indicated 
time of flight of plasma, that is, by approximately 6 p.s, then the high-frequency 
field pulses with the numbers 1, 2, 3, 4, 5 and 6 will practically coincide in time 
with the respective plasma density wells (Fig. 5.5b). A similar phenomenon can 
be seen in Fig. 5.7. These results suggest that the observed field bunches of the 
Langmuir waves travel with the speed of the plasma relative to the installation, 
that is, that they are at rest relative to the plasma. 

The oscillations whose oscillograms are shown in Figs. 5.5-5.7 are, indeed, the 
Langmuir oscillations-their frequency is given by f • (neZI7rm)112 ., 104nt'z. 
These oscillations form bunches. The characteristic period of the bunches, that is, 
the period of modulation of the amplitude of the high-frequency field (a few 
microseconds), is about 103 times the period of the Langmuir oscillations. 
Therefore, these field bunches are solitary waves with the "Langmuir filling". The 
number of the field bunches is approximately (Fig. 5.5) or exactly (Fig. 5.6) equal to 
the number of the density wells. Figures 5.5-5. 7 suggest that the Langmuir field 
bunches are localized at the plasma density wells. 

Thus, the above experimental data can be reliably interpreted as follows: the wave 
formations under study are Langmuir solitons travelling together with plasma (or 
resting in the system of the plasma). 

Interestingly, Fig. 5.6 seems to illustrate the existence of a more or less regular 
"lattice" of the large-amplitude Langmuir solitons with the spatial period )."' • 
"" >.12 = u0/2,[P, where u0 is the velocity of the electrons in the beam. According to 
theoretical predictions [5.16, 5.27], such a lattice can be comparatively stable. 

Under certain conditions (for instance, those in Fig. 5.6) the integral signal from 
the indicator of the Langmuir wave field is modulated in time in the same way as the 
signal at the given frequency (in Fig. 5.6 this is the frequency f • Pp = 300 MHz). 
This means that the waves of all the frequencies in the high-frequency spectrum are 
localized in the plasma density wells and are practically absent outside of these 
wells. Under these conditions the modulational instability of the Langmuir waves is 
manifested particularly clearly. 

It should be noted that under various experimental conditions two cases of wave 
modulation are observed: in one case there is one soliton per (each) modulation 
wavelength (Fig. 5.6), in the other case a whole series of solitons is observed per 
modulation wavelength (Fig. 5. 7). Not only wave bunches but also plasma density 
wells are observed in such series (Fig. 5.7). The period of the envelope of these series 
varies from 5 to 20 p.s, that is, for the plasma speed v = 0.4 x 1()1 cm/s the spatial 
period varies from 2 to 8 em. 

When a correspondence can be found between field bunches and specific density 
wells higher-intensity bunches prove to correspond to deeper and more narrow 
wells (see, for instance, Figs. 5.5 and 5.6). 

The depth of modulation of the plasma density (the depth of plasma wells) varies 
between 10 and 30%. The deepest density wells are illustrated in Fig. 5.6, where 
linin = 30%. If {m/n :S 1 to 20Jo, the density well cannot be recorded owing to the 
background of the intrinsic fluctuations of the plasma density. The width of the 
density well (the duration of the well pulse multiplied by the plasma speed v "" 0.4 x 
x J()& cm/s) is typically of the order of 0.5 to 1 em. Figure 6 shows the most narrow 
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Fig. 5.8.(a) The period TM of modulation of the elec
tric field pulses of the nonlinear Langmuir waves as ·a function of the electron 
energy in the "pumping beam". (b) The experimental points give the modulation 
length >.M = TMV, where v = 0.4 x 10' cm/s; the solid curve gives the wavelength 
of the linear Langmuir wave excited by the electron beam, >. = uofjp, as a func
tion of the electron energy in the beam, W1 = muif2. 

wells whose width is not more than approximately 0.3 em (that is, about 10r0 , 

where r0 is the electron Debye radius). This width is practically equal to the gap 
width of the diagnostic resonator which is 2.5 mm, while the grid mesh width is 2 to 
2.5 mm. This implies that the actual width of these wells can be even smaller. 

Under some (fairly typical) experimental conditions there is not detailed correla
tion between the field bunches and the plasma density wells though their general 
characters of variation are qualitatively similar [5~25]. These cases can, apparently, 
be regarded as soliton turbulences [5.28-31]. 

The period of modulation Ty of the Langmuir waves ana the respective modula
tion length >.M = VTM (where v • 0.4 x 10' cm/s is the plasma speed) increase with 
increasing speed of the electrons of the beam. This increase is illustrated by the data 
of Fig. 5.8, which were averaged over many pulses of the beam for each electron 
energy W1• Figure 5.8 also presents the length of the linear Langmuir wave excited 
by the electron beam in the plasma as a function of W1; 

>. = uoffp (5.12) 

Hereu0 isthespeedoftheelectronsofthebeam(u0 = 6 x 107 x (W1(eV)) 112 cm/s. 
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Fig. S.9. Spatial proflles of the standing Langmuir 
wave (schematic): (a) field strength E; (b) field energy density W - El; (c) plasma 
density. Self-compression of the waves and their diVision into several solitons 
occur in the interval of the length X/2; this figure corresponds to oscillograms of 
the type of those in FJ.g. S.6. 

We can see that the values of XM and X are close and their dependences on W1 

are similar. Conditions of two types were observed in the experiments: either 
~M • ~ (as in Fig. S.8) or XM • X/2 (as Figs. S.6, S. 7 and S.9). 

In these experiments the modulational instability of the Langmuir waves with 
distinct field bunches and respective plasma density wells (standing out against the 
baclcy;round of intrinsic plasma noise) was observed starting from a certain 
threshold energy of oscillations, and this threshold tended noticeably to decrease 
with increasing electron energy W1 in the beam [S.2S]. 

To analyze the spectrum of oscillations the signal from the high-frequency probe 
wa.~ measured with two receivers (PS-19 and PS-20) tuned to different frequencies 
and connected in parallel. The results have shown that if at the Langmuir frequency 
/ 11 • SOO MHz, the frequency difference ~between the receivers is not more than 
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5 MHz, the oscillograms of their output signals are practically identical. When /if = 
= 1 S MHz the pulses from the receivers coincide in approximately half of the cases; 
and when /if = 2S MHz, coincidence of the pulses is rather rare. However, the 
oscillograms for /if = SO MHz are sometimes very similar. These results imply that 
the width of the frequency spectrum of the Langmuir waves in the regime of soliton 
formation is /if= 1S MHz for the fundamental frequency f = /p '"' SOO MHz. 

As for ·the "mean free path" of solitons, we can see from Fig. 5.6 that is seems to 
correspond to the soliton lifetime of no less than 100 p.s, that is, its lowest estimate is 
more than about SO em. This estimate was also obtained in the independent ex
periments described above, in which the Langmuir solitons were observed after the 
external pumping (by electron beam or pumping resonator) of the waves had been 
discontinued; the lifetime of the Langmuir solitons was found to exceed several tens 
of thousands of the periods of the Langmuir oscillations (see Figs. S.2-4). 

5.3 Comparison of Theoretical Predictions 
with Experimental Results 

We shall make the following comparisons between the theoretical predictions and 
experimental results for the Langmuir solitons: (1) the relationship between the 
longitudinal size (width) ..1. of the soliton and the depth of the plasma density well, 
on/n; (2) the relationship between the characteristic dimension of the modulational 
instability of the Langmuir waves (the modulation length AM) and the parameters of 
the electron beam and the plasma; (3) the threshold of the observed modulational 
instability and its dependence on the energy of the electrons of the beam; (4) the fre
quency spectrum of oscillations in the Langmuir soliton, and (S) the relationship 
between the observed degree of self -compression of the Langmuir wave and the 
"coefficient of amplification" of its electric field. Let us now analyze the above ex
perimental data in this sequence. 

1. To compare the soliton width and the depth of the density well let us consider 
the data in Fig. S.10, where the density well corresponding to the soliton (pulse 3) is 
on!n = 0.1, and the soliton width (at the level of 1 I e of the maximum) is ..1. = 0.2S 
em""' 6r0 . On the other hand, according to the theory of Sec. 1 [see eq. (S.7)], the 
soliton width is determined by the depth of the density well: 

L'>n.theor"" 'o( 30 0: ) 112 = 'o~O:; ) 112 

For the case shown in Fig. S.10 this equation yields for the soliton width: ..in.theor "" 

• 18r0 • Hence, ..in.expe/..in.theor • 1/3. At the present stage of development of the 
physics of soliton~ this ratio between the predicted and observed values should, ap
parently, be regarded as a not bad agreement, rather than a disagreement. 

2. According to the experimental results discussed above and shown, for instance, 
in Figs. S.8 and S.9, the modulation length for the nonlinear Langmuir waves 
satisfies the condition AM ""' A or AM ""' A/2, where A = u,Jfp [see eq. (S.12)]. This 
implies that the starting (linear) Langmuir wave is the envelope for shorter
wavelength field modulation due to the modulational instability. This behaviour of 
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Fig. 5.10. Oscillogram of the output signal from the 
diagnostic resonator serving as the indicator of the plasma density (5 p.5 per inter
val). Pulses 1 and 3 correspond to the density wells with the duration T < 1 p.s, 
pulse 2 corresponds to a plasma bunch; n = (3 to 3.5) x 10' cm·3, f= 500 MHz, 
W1 = 300 eV. Pulse 3 corresponds to the relative depth of the density well 
fm/n = 0.1. 

the nonlinear waves also agrees with the theoretical predictions; it is typical of the 
oscillating two stream instability (OTSI) discussed in Sec. 5.1. This type of modula
tional instability must develop at a sufficiently high density of the oscillation energy; 
according to eq. (5.10), we have 

WlnT '"" fmln '"" (krr))Z 

where k is the wave number of the oscillations modulated by the starting Langmuir 
wave with the wavelength A (that is, k > 21r/A). If the oscillation energy is lower, 
modulational instability of another type can occur, when the modulation length of 
the oscillations is larger than the wavelength of the starting (linear) Langmuir wave. 
The resulting solitons are known as the envelope solitons (see Sec.5.1). In contrast 
to this, the case illustrated by Figs. 5.7 and 5.9 can be described by the term the 
"soliton envelope". 

As it was shown above, the observed Langmuir solitons in the first approximation 
are resting with respect to the plasma, that is, in the system of moving plasma they 
can be regarded as bunches of standing nonlinear waves. The simplest picture of the 
standing waves is obtained when (see Figs. 5.6 and 5.9) the spatial period of wave 
modulation is equal to the half-wavelength of the starting wave, that is, coincides 
with the spatial period of the wave intensity, AM/2. Under such conditions the wave 
forms a regular series of the plasma density wells with the period AM/2 '"" uof.lf., and 
is localized in these wells, making up a quasistable "soliton lattice" treated 
theoretically in [5.16]. 

The process of formation of the standing nonlinear wave and, in particular, of 
the wave with the wavelength half that of the starting pumping wave, was observed 
in the experiments [5.23] with highly collisional nonmagnetized plasma (and in 
numerical simulations [5.28, 5.31, 5.17]). The further turbulence of the standing 
wave was calculated numerically in [5.28]. 

3. The threshold (critical) energy density of the Langmuir waves corresponding to 
the beginning of the oscillating two-stream instability is given bv the theoretical 
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relationship (5.10): 

(Win1)cr =- (kro)'l 

Since, as shown above. 

and 

~D = T/4rne2 

then we have (kr o)Z. ii!:: T 12 W1 and therefore the threshold is 
(W/n7)cr ii!:: T /2W1 (5.13) 

For instance, for W1 = 800 eV and Te = 10 eV the instability threshold is 

(Win1)cr ii!:: 0.6 X 1o-2 (5.14) 

Equation (5.13) implies that the threshold of the oscillating two-stream instability 
is largely dependent on the energy of the electrons in the beam exciting the waves. 

In this connection, the experiments reported in [5.25] have demonstrated that for 
a relatively low energy of the electrons in the beam ( W1 = 400 e V) the modulational 
instability is relatively near the threshold and therefore no sufficiently deep plasma 
density wells are produced, which would be noticeable against the background of 
the intrinsic plasma noise. According to eq. (5.13), an increase in the electron energy 
up to 800 eV should considerably lower the threshold of instability; as shown by the 
experimental results of [5.25], this is, indeed, accompanied with the formation of 
distinct density wells where the field bunches which produced them are localized. 
The depth of the wells Bnln is about (4 to S) x 1o-2, that is, higher than the 
threshold (S.14) almost by an order of magnitude. We can assume that in this case 
the instability threshold was considerably surpassed and the wells were significantly 
deepened. The width !::;. of the resulting solitons can be estimated as 0.8 em • 20rn. 
The characteristic wave number of solitons is k0 ""' 21 /::,n ""' 1/10r0 , that is, 
(k0r0 ) 2 = 10-2• According to eq. (5.7), now we should have 
W/nT = Bnln ""' 6(k0r0 ) 2 = 6 x 10-2, while the experimental results yield 
Bn/ n == (4 to S) x 10-2• The comparison of these results shows thatthere is a good 
agreement between the theoretical and experimental values of the threshold. 

Since we have a qualitative agreement between experimental results and 
theoretical predictions, we can use the theoretical relationship 

E:/(16r) • (Bn/n)(nTJ 

for estimating the electric field in the observed Langmuir solitons. When Bn/n = 
= 3 x I0- 1 and n = 1 x 109 cm- 3 (the conditions as in Fig. S.6) or 
Bn/n = 1 x I0- 1 and n = 3 x 109 cm- 3 (the conditions as in Fig. S.IO) and for 
T. = lOeVwehave£0 ""' 150V/cm. 

4. The frequency spectrum of the nonlinear Langmuir waves due to the modula
tional instability proves to be sufficiently narrow. The characteristic width of the 
spectrum is Atnonlin = 10 to 15 MHz ""'/;,where/; = /p(m/M)112 is the Langmuir 
frequency of the molecular hydrogen ions (where M is the ion mass) for the plasma 
density n = 3 x 101 cm-3, which was typical for our experiments. 
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As can be seen from Figs. 5.8 and 5.9, the Langmuir soliton concentrates the 
energy of the waves which was initially contained in the volume of the length >..M = 
= (1/2 to 1)>.., that is, the wave energy density Wis higher by the factor of approx
imately >..; ~. than the initial energy density W0• For instance, for >.. = 4 em 
(Fig. 5.8) and~. = 0.2 em we obtain W"" 20W0 • If we take WofnT""' (l to 2)0Jo 
(which seems to be reasonable), we obtain WlnT • (20 to 40)%, which agrees quite 
well with the observed on/n • l/3 (see Fig. 5.6). 

Now we can make the following conclusions. (l) No significant disagreement has 
yet been found between the experimental data and the theoretical predictions of 
Sec. S .1 (in the first approximation) both in qualitative and quantitative estimates. 
(2) In magnetized collisionless plasma the Langmuir solitons are quite real and suffi
ciently stable, and their parameters and other properties are close to the theoretical 
predictions. This result is by no means trivial; at the starting stage of this experimen
tal series many theorists were fairly sceptical about the feasibility of producing the 
quasistable Langmuir solitons in radially confined magnetized plasma. 

5.4 De ObUque 
Langmuir SoUtons 

In this section we shall continue describing the search for plasma wave solitons 
but, in contrast to the preceding sections, we shall deal with the electron waves in 
the magnetized plasma column of a limited diameter, in contrast to the Langmuir 
waves. The frequencies of these waves are lower than/P. Dispersion of these waves 
(known as the Trivelpiece-Gould waves) is described by 

k. 
/=/pcos8 =/p (k~+ k~)1,2 (5.15) 

where k, = 21f/A, and k .L • 1/a are the longitudinal and transverse wave numbers, 
and a is the radius of the plasma column. 

These waves can be referred to as the oblique Langmuir waves in the finite 
plasma. In contrast to the oblique Langmuir waves in the finite plasma (which are, 
in principle, conceivable), the transverse wave number k .L of the waves described by 
eq. (5.15) is determined by the plasma colupm radius a; for instance, if the plasma 
column is separated from the (far) walls, then k .L ""' lla. 

Another interesting aspect of the modulational instability of these waves is that 
the Lighthill criterion (5.3) is not satisfied for these waves (see Sec. 5.1), and we can 
verify experimentally how this fact affects the possibility of soliton formation. 

The oblique Langmuir solitons were studied experimentally in [5.26] which was a 
continuation of the studies [5.25, 5.24]. These experiments were performed with the 
same installation but after the pumping with the electron beam had been discon
tinued, that is, under the conditions of "afterglow" of the beam-treated plasma. 
This study was possible owing to the fact that plasma was collisionless [5.24] (see 
Sec. 5.2) and that, in particular, the pressure of the neutral gas (hydrogen) in the 
analyzed plasma was sufficiently low (p :S 5 x w-• mmHg). It was just the high 
nmcentration of the neutral gas (the argon pressure p e: (l to 2) x w-• mmHg) that 
did not allow the American experimenters [5.22, 5.23] to observe the Langmuir 
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Fig. 5.11. Oscillograms from the indicators of the 
plasma density (the lower one-upward trace deflection) and for the envelope of 
the amplitudes of the high-frequency electric field of the waves (the upper 
one-downward trace deflection); 25 p.s per interval. The indicators are at the 
end of the plasma column at the distance L = 140 em from the discharge cham
ber of the plasma source. As in all other oscillograms in [5.26], the density wells 
correspond to downward deflection in the lower oscillogram; the arrow indicates 
the switching-off of pumping by the electron beam. 

solitons after the electron beam pumping had been discontinued; owing to the 
electron-atom collisions the Langmuir oscillations decayed during a fraction of a 
microsecond, that is, they were unobservable in the scale of the characteristic times 
of the problem. 

To obtain the waves described by eq. (5.15) the plasma column diameter was 
taken to be 3 em, that is, half that used in the experiments [5.25]. In this case the 
column diameter is smaller than the wavelength A= uoffofthe electron oscillations 
generated in the plasma by the electron beam (see below) and the observed oscilla
tions correspond to the sought oscillation mode described by eq. (5.15). The general 
experimental conditions and techniques were the same as in [5.25]. The plasma den
sity was n = (3 to 4) x 10' cm-3, the longitudinal magnetic field H = 2 x 103 Oe, 
the electron temperature T. = (10 to 20) eV, the plasma column length about 
200 em, and the plasma speed v = (2 to 6) x 10' cm/s. The electron beam had the 
following typical parameters: the electron beam energy W1 = 2 to 2.5 keV, the cur
rent I = 2 to 2.5 A, the electron density in the beam n1 = (0.1 to 0.2)n, and the 
beam pulse duration about 20 p.s. Under such conditions we had the plasma fre
quency /p = 500 to 600 MHz, the velocity of the electrons of the beam u0 = (2.5 to 

3) x 10' cm/s, and the length of the Cerenkov wave excited by the electron beam in 
the plasma A0 = uof/p • 5 em > 2a. The plasma speed was measured from the shift 
with time of the ion saturation current at mesh probes (with 950Jo transparency) 
placed along the plasma column. The wave velocity was also measured with these 
probes which were connected to two independent receivers P5-19 and P5-2 tuned to 
the same frequency. This experimental procedure made it possible to observe wave 
evolution for one beam "shot". As in [5.24, 5.25], the indicators of the electric field 
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Fig. 5.12. Oscillograms similar to those in Fig. 5.11; 
10 p.s per interval, L = 110 em, v = 2 x 10' cm/s. The distance between the field 
hunches is 5 to 10 em, the characteristic size of the bunches is about 4 em. 

were mesh high-frequency probes with the surface perpendicular to the magnetic 
field. Therefore, the probes detected only the waves with considerable electric field 
wmponent parallel to the magnetic field, among all the waves in the plasma col
umn. Thus, either purely longitudinal (Langmuir) waves or the oblique Langmuir 
wavrs were primarily identified among all the high-frequency waves propagating 
alonl! the magnetic field. 

The following experimental results have been obtained. 
I. The oblique Langmuir waves with the frequencies/= 150 to 350 MHz < /p 

corresponding to the dispersion mode (5 .15) are found for a very long time (up to 
I 00-200 p.s) in the "afterglow" plasma, that is, after the pumping electron beam has 
been cut off. This lifetime of the waves should be regarded as sufficiently long since 
the oscillation period is just a few nanoseconds. Figures 5.11-5.15 illustrate the 
waves in the afterglow plasma and show the variation of the plasma density with 
time (the lower oscillograms in Figs. 5.11, 5.12, and 5.13b; upward trace deflec
t ions) and the oscillograms for the detected envelope of the amplitudes of the high
frequency waves (the upper oscillograms, downward trace deflections). 

2. The figures show that the waves are concentrated into bunches in which the 
rharaderistic time of variation of time envelope of the oscillation amplitudes is a 
flow microseconds, that is, it is of the order of thousands of oscillation periods. 
Therefore, as in the experiments [5.24, 5.25], these wave bunches are solitary waves 
with the high-frequency filling. 

1. The oscillograms readily yield an estimate of the speeds of the wave bunches 
1111d the plasma itself as the ratio of the distance L of the indicators of the high
lrt"quency field and the plasma density from the discharge chamber of the plasma 
\ource to the time of flight which is approximately equal to the time interval bet
wren cut-off of the electron beam and the moment of recording of the wave bun
riles and the plasma (of a given density). It can be seen that the wave bunches travel 
tollether with the plasma with the velocity v of the order of 10' cm/s. The 
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Fig. 5.13. Oscillograms (a, b) from two identical indi
cators of the electric field of the waves which are at the distance of 94 em from 
each other and tuned to the same frequency f = 250 MHz; 10 p.s per interval. 
(c) The variation of the plasma density with time in two cross sections of the plasma 
column at the distance of 94 em from each other. The time differences between 
the oscillograms from the field and density indicators due to the 94-cm separa
tion of them are approximately equal. 
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Fig. 5.14. Oscillograms of two indicators of the wave 
fic:ld at the distance of 94 em from each other; 10 I'S per interval. The total 
length of the wave packet does not increase during the time of plasma passage 
and some of its components become more distinct and narrow 
(self-compression). 

characteristic sizes of the wave bunches and the distances between them can be 
found by multiplying this velocity (which is different under different conditions) by 
the: duration of the wave pulses and the intervals between them (as it was done in 
(~.24, S.2S)). 

4. The observed waves evidence a sharp modulation of their amplitude (see Figs. 
~.11-S.IS)withthedistinctspatialperiods~M = 5to6cm"" ~of2and~M = lOto 
12 em .. ~0 • where ~0 = u0/ f is the initial wavelength of the wave generated by the 
c:lc:ctron beam in the plasma (for u0 = 2.5 x I ()I cm/s and/= 2.5 x 10' s-1 we have 
h0 = 10 em). The characteristic longitudinal size of the wave bunches is about 4 em, 
that is, of the order of the plasma column diameter. 

5. During afterglow of the beam-treated plasma there is observed modulation of 
the: plasma density in the form of density wells and bunches, which approximately 
correlate with the wave bunches (see Fig. 5.12). Therefore, according to the discus
Niun in Item 2 and the results of [5.20-25], we can regard the observed wave forma
tions as the oblique Langmuir solitons with high-frequency filling. 

to. The wave bunches propagate along the installation without spreading. This 
nm be seen, for instance, from Figs. 5.13-5.15 which present oscillograms of the 
''llnals from two probes which are at different distances from the plasma source, the 
dl~tance between the probes is 94 and 78 em. The data shown in Figs. 5.13-5.15 
wrrc: obtained in one beam shot with two independent receivers tuned to the same 
lrct1uc:ncy. We see from the figures that the observed wave bunches travel the 
tltstance about 100 em along the magnetic field in approximately IS I'S without 
~pac:ading; the width of the individual pulses comprising a wave packet, the distance 
hct ween them and the total width of the wave packet (shown in the figures by ar
aows) do not vary as the packet propagates along the installation. Hence, the 
ohsc:rved wave packets are essentially nonlinear since a linear wave packet rapidly 
\Ill cuds out at distances of the order of its width (see Sec. 5.1). 
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Fig. 5.15. Same as in Fig. 5.14. Illustrations of self
compression of the nonlinear waves, 10 p.s per interval. 

7. The wave bunches are localized in the plasma; they are approximately at rest 
relative to the plasma and travel relative to the installation together with the plasma. 
The speed of wave bunches and the plasma is close to the ion sound speed in atomic 
hydrogen, c5 = (2 to 5) x 10' cm/s (the higher value corresponds to Te = 20 eV). 
The conclusion that the observed nonlinear waves are localized in the plasma 
follows from the comparison of their speed relative to the installation and the speed 
of the plasma, as can be seen from Figs. 5.13a and b. These flgures compare the 
shifts with time of the oscillograms for two high-frequency probes which are at a 
distance of 94 em from each other and the shifts with time of the oscillograms for 
two plasma density indicators which are at the same distance. It can be seen that 
both the wave bunches and the plasma travel the distance of 94 em in about 15 p.s; 
the speed of the waves and the plasma (on the average) is v • 6 x 10' cm/s. 

Similar time differences in recording of the wave bunches travelling with plasma 
were observed in another experiment in which the high-frequency probe (the signal 
from it was fed to an P5-19 receiver) was moved in the direction of the plasma mo
tion with each "shot" of the electron beam; the plasma speed was (2 to 3) x 10' 
cm/s. The experimental results are shown in Fig. 5.16. It can be seen that the wave 
bunches travel along the magnetic fleld without changing their shape. As in Figs. 
5.13-5.15, the wave bunches are "frozen" into the plasma. 



171 M. V. Nezlin 

Fig. 5.16. Oscillograms of the same wave field indica
'"' displaced from the initial position in the direction of plasma motion: (a) dis
plu,·rment 30 em, (b) 60 em, (c) 20 em; 25, 10 and 10 p.s per interval respectively. 
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Thus, the observed wave bunches are either at rest relative to the plasma or travel 
relative to it with a speed which is definitely not higher than the ion sound speed c,. 
But under the given experimental conditions this speed is lower by three orders of 
magnitude than the characteristic speed of the linear Trivelpiece-Gould waves with 
dispersion described by eq. (5.15). This fact provides further evidence that the ob
lique Langmuir waves under study are essentially nonlinear. 

8. Figures 5.14-5.15 illustrate the evolution with time of the observed 
nonspreading wave bunches. For instance, the upper oscillogram in Fig. 5.14 reveals 
only some ''embryos • • of the electric field peaks but the lower oscillogram shows in 
the same plasma regions (displaced by 94 em along the magnetic field) distinct field 
bunches with noticeably higher amplitude, which formed after 15-20 p.s. A con
siderably larger number of distinct field bunches is seen on the lower oscillograms 
than on the upper ones. The total length of the series of the wave bunches (shown by 
arrows) is the same in the upper and lower oscillograms in Fig. 5.14 (as is the case in 
Figs. 5.13 and 5.15, too). 

Figures 5.15a and b also clearly illustrate self-compression of the waves as they 
travel (together with the plasma) along the installation. We see that the field 
bunches become much more narrow and distinct with time; in particular, in Fig. 
5.15 the width of the field bunches at the end of the plasma column is so small that 
they are represented by points, rather than a line, on the cathode-ray tube screen. 
Thus, Figs. 5.13-15 illustrate the modulational instability (self-compression) of the 
waves under study; in Figs. 5.14 and 5.15 the growth rate of this instability is 'Y • 
10' s-1 • mfpfM, where m and Mare the masses of the electron and the proton. 

9. The lifetime T of the observed packets of the oblique Langmuir waves 
(solitons) in free motion (that is, in the absence of excitation) is clearly longer than 
20 to 30 p.s, that is, 10' oscillation periods. During this time solitons travel along a 
greater part of the installation without noticeable spreading. 

10. The experimental results suggest the following mechanism of self
compression of the nonlinear oblique Langmuir waves giving rise to solitons. Since, 
as shown above, the characteristic length of wave modulation AM is smaller than or 
of the order of the initial wavelength (that is, modulation results in sharp "tearing" 
of the high-frequency filling) the mechanism of self-compression seems to have the 
same nature as in the experiments [5.22, 5.25], where it was due to the oscillating 
two-stream instability discussed in Sec. 5 .I. This mechanism apparently is not 
related to the well-known Lighthill criterion (5.3) which is associated with forma
tion of the envelope soliton (AM ill> Ac,), that is, the situation when the high-frequency 
filling of the wave packet varies adiabatically. 

11. The frequency spectrum band of the observed solitons (synchronous at lower 
frequency) is about 40 MHz wide though the total spectrum width is more than 
200 MHz. There is a distinct difference in time between appearances of the wave 
bunches in various regions of the frequency spectrum; the lower-frequency oscilla
tions appear at the distant high-frequency probe considerably later. For instance, at 
the probe which is at the distance of 100 em from the plasma source the waves with 
the frequency 150 MHz appear by about 10 to 12 p.s later than the waves with the 
frequency 200 MHz, about 20 p.s later than the waves with the frequency 250 MHz, 
and so on [5.26]. This observation suggests cascade amplification of the waves in 
the plasma owing to collective processes of their scattering and decay [5.1, 5.2]. 
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Thus, the study [5.26] for the first time revealed the slow (approximately standing 
with respect to plasma) long-lived oblique Langmuir solitons due to the modula
tional instability of the Trivelpiece-Gould waves. Further experimental and 
theoretical work is needed to compare their properties with theoretical predictions. 

The oblique Langmuir soliton discussed here should be distinguished from the 
other soliton of the same wave branch described by eq. (5.15), which has an entirely 
different nature and generation mechanism. This soliton (nonlinear solitary space
charge wave), described by the Korteweg-de Vries (KdV) equation, exists under the 
conditions of (linear) dispersion of the waves described by eq. (5.15) as well as ion
acoustic waves or "shallow-water" waves. The KdV solitons are the propagating 
nonspreading pulses due to the equilibrium established between the nonlinear 
steepening of the wave front and its dispersive spreading [5.1, 5.2]. In contrast to 
the solitons due to the modulational instability, these solitons do not have high
frequency filling. 

The speed of the KdV soliton depends on its amplitude. It is close by the order of 
magnitude to the phase velocity vph of the linear wave in that range of the wave 
numbers kin which the dependence of vph on k is the stron~est, that is, at the max
imum curvature of the dispersion dependence w(k) [5.1, 5.2]. For instance, the 
speed of the ion-acoustic soliton is not much higher than the ion sound speed, and 
the speed of the Trivelpiece-Gould space-charge solitary wave is also not much 
higher than the characteristic "plasma-waveguide" velocity vph == wPa, where a is 
the plasma column radius. The longitudinal soliton size also corresponds to the 
wave number in the region ofthe highest dispersion of the phase velocity [5.1, 5.2]. 
In particular, the space-charge KdV soliton in the magnetized plasma waveguide has 
the longitudinal size of the order of a; the space-charge solitons in radially restricted 
magnetized plasma column were observed in the experiments [5.32-35]. 

Table 5.1 compares the properties of two types of the Trivelpiece-Gould soliton~. 
namely, the oblique Langmuir soliton and the KdV soliton formed by the space
charge wave. The velocity of the KdV soliton given in the table corresponds to the 
specific conditions of the experiments [5.26]. It can be seen from the table that the 
properties of these two types of solitons differ greatly. 

TABLE 5.1 

Soliton type Speed relative to Structure Mechanism of 
plasma excitation 

Oblique Langmuir v cC cs Plasma density Modulational 
("slow") soliton well with the instability 
[5.26) Langmuir 

"filling" 

Trivelpiece-Gould v "" 103c5 Without filling KdV mechanism 
space-charge soliton 
("fast soliton") 
[see eq. (5.15)) 
[5.R-35) 
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Conclusion 

The experimental results discussed in this review suggest that solitons are the most 
characteristic state of the strong Langmuir turbulence of the magnetized colli
sionless plasma. They are sufficiently stable and are not strongly affected by all 
numerous deviations from the perfect system geometry, which are unavoidable 
under real experimental conditions. 

The solitons are produced owing to the modulational instability (self-compres
sion) of large-amplitude electron waves. Their size decreases with increasing wave 
energy density. The minimal observed size of the Langmuir solitons is 5 to 6 Debye 
radiuses; this value, apparently, corresponds to the boundary of strong absorption 
by the plasma particles (the Landau damping, etc.). 

When it was possible to compare the experimental results with theoretical predic
tions, we found a certain qualitative agreement. However, some problems were 
identified that definitely need further theoretical analysis, such as the fo1lowing. 

1. The detailed mechanism of the modulational instability with the modulation 
wave length shorter than the starting oscillation wavelength, AM ::5 A, that is, the 
phenomenon when the starting wave (or its half) is the soliton envelope 
(see Figs. 5.6-5.9). 

2. The spatial structure and the frequency spectrum of the Langmuir soliton in 
the radially nonuniform plasma column. " 

3. The spatial structure, the frequency spectrum and the mechanism of formation 
of the "oblique Langmuir "soliton. 
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Introduction 

The plasma dynamics in open traps is to a considerable 
extent determined by the electron temperature Te. For instance, Te determines the 
potential to which the plasma is charged (the ambipolar potential); Te determines 
also the time of cooling of the ions (typically, in open traps the mean energy of the 
ions is considerably higher than Te>· 

Up till now the electron temperature in open traps was measured mainly from the 
Thomson scattering of the laser radiation. However, continuous determination of 
the spatial profile of Te during one working cycle entails considerable technical dif
ficulties. Moreover, such measurements are practically unfeasible in low-density 
plasmas (n0 < 1012 cm-3). Estimates of Te from the ambipolar potential are rather 
inaccurate and are, actually, just order-of-magnitudeestimates. 

Multibeam microwave interferometry typically yields reliable results for the 
plasma density distribution n0 • But interferometric data require complicate 
mathematical treatment and the use of a priori assumptions on the form of the 
distribution. 

Diagnostics based on the electron cyclotron resonance (ecr) often makes possible 
fast local measurements of n0 and Te. The most widely used diagnostic makes use 
of the absolute measurements of the radiation spectrum for the harmonics of the 
electron cyclotron frequency in tokamaks. When we record the "black" harmonics 
of the electron cyclotron radiation whose intensity is proportional to Te, according 
to the Kirchofrs law, and the frequency corresponds to the position of the 
cyclotron resonance point in space, we, thus, measure continuously in space and 
time the electron temperature in tokamaks. Clearly, this method is applicable to the 
high-density plasma of open traps, too. We shall not discuss such methods in detail 
here since there is wide selection of literature on them (see, for instance [6.1]). 

In this review we shall analyze tne diagnostic methods based on measurements of 
the absorption coefficient for a probe beam of electromagnetic waves with the fre
quency w close to the electron cyclotron frequency we or its harmonics nwe. In open 
traps the dependence of the magnetic field on the coordinates is fairly complicated 
(see Fig. 6.1) and this makes the calculations of the absorption coefficient 11 more 
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--- w > nw80 

0 z 

Fig. 6.1. The magnetic field as a function of the dis
tance along the axis of the open magnetic trap. The condition nw.(z.) = w deter
mines the positions of the resonance points. 

difficult. However, it is precisely this fact, as noted in [6.2], that makes the 
measurement of Te relatively simple. 

When we calculate the absorption coefficient for the cyclotron oscillations, we 
must bear in mind that the region of the resonance interaction in which electron's 
exchange energy with oscillations occupies just a small part of the trap. Electrons 
leave this region moving along the magnetic field. However, they retain a 
"memory" of the resonance interaction even after considerable displacement. This 
results in a nonlocal relationship between the electric current and the wave field pro
ducing it, so that the wave equation acquires the integral form. This is quite natural 
since this problem belongs to the class of problems on propagation of oscillations in 
nonuniform dispersing media. Such problems, typically, can be solved only with 
significant approximating assumptions. We shall assume that the absorption coeffi
cient is small (17 -c 1). This assumption will allow us to calculate the absorption coef
ficient using the method of successive approximations assuming in the zero-order 
approximation that the electromagnetic oscillations do not exchange energy with 
electrons. 

In the first section of this paper we shall calculate the absorption coefficient for 
the first harmonic of the electron cyclotron frequency when· the wave propagates 
along the magnetic field of the open trap. We shall consider the oscillations with the 
frequency w < "'eO• where "'eO is the minimum cyclotron frequency in the trap. This 
case illustrates the main physical features of ecr in open traps. 

12-449 
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In the second section we shall calculate the absorption coefficient for the higher 
harmonics of the cyclotron frequency (w "" nweO, n ~ 2) making more general 
assumptions on the direction of wave propagation and the relationship between w 
and nweO. 

In the third section we shall discuss various modifications of this diagnostic 
technique and some results of its experimental application. 

Note that in this paper, though we are analyzing the ecr diagnostics for open 
traps, its modifications can be applicable to arbitrary systems with nonuniform 
magnetic field, including toroidal systems. 

6.1. Resonance Absorption of 
Osclllations with w Ql we 

6.1.1. Resonance cyclotron interaction 
in nonuniform magnetic field 

Let us analyze the resonance cyclotron interaction at an oscillation frequency 
close to weO. Assume that in the vicinity of the magnetic field minimum the 
cyclotron frequency varies parabolically: we(Z) = weO(l + z2/L2). Consider the 
oscillations propagating along the magnetic field. These oscillations have the most 
intense interaction with electrons and therefore these oscillations should be useful 
for diagnostics of a low-density plasma, where the absorption coefficient is, 
generally, small. 

If the conditions w - weO ~ weO(Q/Lfl'3 , where Qe is the mean Larmor radius, 
is satisfied, then the absorption coefficient 71 is determined by the plasma density 
and by the derivative dw/dz at the cyclotron resonance point [6.3] but it is indepen
dent of the electron temperature. In this case, as shown in [6.4], the kinetic effects 
due to thermal motion of electrons determine the fme structure of the resonance 
layer in which absorption occurs, rather than the absorption coefficient. This makes 
it possible to fmd the local density values from the absorption coefficient. 

When lw - weOI < weO(Q/L)2' 3 the absorption coefficient must, apparently, 
depend on the temperature but an exact expression for it has not been derived yet 
owing to mathematical difficulties involved. 

If the electrons were cold, there would be no resonance interaction for w < weO. 
When we take into account the thermal motion, the resonance condition has the 
form w = we + k1v1 due to the Doppler effect, where the subscript I denotes 
parallel orientation with respect to the main magnetic field. The resonance condi
tion implies that the electrons that travel towards the wave must have the resonance 
interaction with it for w < weO. 

In the frequency range w < w..o the absorption coefficient is proportional to the 
number of electrons with the resonance velocity v1 = (weO - w)lk1• Hence, when 
we find the ecr line broadening in the frequency range w < weO, we can determine 
the electron temperature, and if the velocity distribution of electrons differs from 
the Maxwellian distribution, then we can determine the form of the velocity 
distribution, too. 
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With decreasing electron temperature and increasing difference "'.o-w the so
called effect of finite time of the resonance interaction (eft) starts to manifest itself. 
This effect, as the Doppler effect, results in the broadening of the ecr line in the fre
quency range w < "'eO· The effect is due to the nonumiformity of the magnetic 
field, owing to which any individual electron is in resonance with the wave only for 
a finite time 6t which can be estimated from the condition 

!::,.t 

<ll(b.t) = j [we(z(t')) - w]dt' - 1 
0 

(6.1) 

Here 41(6t) is the phase difference between the Larmor electron rotation and the 
electromagnetic oscillations, where the moment when the electron passes the 
minimum of the magnetic field is taken as the starting moment; for the sake of 
simplicity the Doppler effect is ignored and the oscillations with w < "'eO are taken 
into consideration. Assuming that the electron moves along 8 0 with constant veloci
ty we can find the resonance interaction time 6t - wJJLIQJ2" from eq. (6.1). Ow
ing to the uncertainty relation 6w6t - 1 the electrons cannot distinguish between 
the oscillations the difference between whose frequencies is 6w ::s (6tt1• Hence, 
the ecr lines must broaden up to the frequency w < "'eO and the order-of
magnitude estimate of the characteristic eft broadening is w;}J..LI Q J2'3. 

6.1.2. The absorption coefficient 

The electric field of the oscillations propagating along the magnetic field 8 0 is 
perpendicular to the vector 8 0 and has a circular polarization, rotating in the same 
sense as electrons or ions. We shall deal with the oscillations of the first type, which 
alone can exchange energy with electrons. In the approximation of cold electrons 
the wave equation describing propagation of such oscillations has the form 

---+- 1+ E -0 d2E "'2 ( "'2 ) 

d z 2 c 2 w[we(Z) - w] --
(6.2) 

We employ here the right-handed Cartesian system of coordinates with the axis Oz 
parallel to the magnetic field. The quantity K= E.-i£7 • The time dependence of 
the oscillations is written as exp(- iwt), so that for the electric vector rotating in the 
same direction as electrons we have Ey = E.i. Since the wavelength of the cyclotron 
oscillations typically satisfies the condition >. <C L, the dependence of the electric 
field of the oscillations on the coordinate z can be taken in the quasiclassical form: 

where 

w ( w~ \112 
k(z) =-c 1 + ·J 

w(we(t) - w) 1 ' 
k0 = k(O) 

12* 
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Using the method of successive approximations, we can calculate the energy ob
tained by electrons from the electric field of a given form. The energy of an in
dividual electron varies under the effect of oscillations according to the equation 

e = _!._ Re(E-v!) 
2 

Here E- is taken along the unperturbed trajectory of the electron and 
v- = vx - ivY is found from the unperturbed motion equation which yeilds 

t 

V-(t) =v-(O)exp [ -i J.we(Z(t'))dt'] 

0 

When the electron passes the magnetic field minimum, where the cyclotron fre
quency is close to the frequency of the oscillations under considerations, the elec
tric field vector and the vector of the transverse electron velocity rotate syn
chronously for some time. It is precisely this region that determines the variation 
of the electron energy: 

4E • -!!.. v J. (O)E-(O)J exp(io110) 
2 

J= j dtexp[ioll(t)J 

- .. 

oll(t) = -wt + j we(Z(t'))dt' + 111 rk(z(t'))dt' 

0 0 

Here oll0 is the phase difference at the moment when the electron passes the 
magnetic field minimum. 

We shall assume that the phase oll0 varies randomly in successive passages. The 
phase randomization can be caused by the fact that the spectrum of the probe 
beam has the fmite width &, ;;e "'b' where wb - v11I: is the frequency of oscilla
tions of electrons along the trap, and L' is the trap length. The phase ran
domization can also be the result of the Coulomb collisions, if their frequency " 
is higher than we(p/L)3, and of the nonlinear effects for E-01: (B0vlc)(p/L)3 (see 
[6.5]). Note that the conditions under which phase randomization occurs are 
usually satisfied. 

If the phase variation in successive passages through the resonance is random, 
the energy variation 4e due to the resonance interaction also must be random. 
This will result in the energy diffusion of electrons with the diffusion coefficient 
D = j4e-j 2wb. The total energy absorbed per unit time by the electrons in the 
field tube with the unit cross-sectional area is 

W= -No rdvDafo =nor dvlv.l....!...j4E l~o (6.4) 
j aE j Te 
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2 3 

Fig. 6.2. The distribution function / 0(v•) for low 
(curve a) and high (curve b) temperatures and the function I4E(v )1 2 = 
= (ev .J2)2IEJI2 (curve c), where: region 1- I y 12:::: 2r I ~.l-1 exp (- 2\ ~.1); 
region 2- 1 y 12:::: 22'13-lllrz(l/3) 1 ~.1-z'J; region 3- 1 y 12:::: 8r 1 ~.1-1 

cos\~s + ~) ~. = ~(t.); t. = t(z.). 

where N 0 = noL' is the number of electrons in the given field tube, and / 0 is the 
Maxwellian distribution. The absorption coefficient is given by 'II= WIS, where 
S = c2kiKI 2141rw is the energy flux density of the oscillations. 

The absorption coefficient and the character of its frequency dependence are 
significantly affected by the relationship between the thermal velocity of elec
trons v T and the characteristic scale of variation of the function I4E( v 1) I giving 
the increment of the electron energy due to a passage through the magnetic field 
minimum. A schematic of this function is shown in Fig. 6.2. The function has 
the absolute maximum for I v11 = v0 = (w.o - w)lk0• In this case the resonance 
condition is satisfied at the magnetic field minimum and the electron is in 
resonance with the oscillations for the longest possible time 4t = w<A (LI ee)2' 3; 

see Sec. 6.1.1. For I 11 1 1 > 110 there are two symmetric resonance points z = ± z, 
found from the condition w = w .<z) - k 1(z) I v 11• Their contributions to 14e I 
can amplify or attenuate each other. This results in oscillations of 14e(v 1) I; see 
Fig. 6.2. When w- w00 »- w00(eel £)2' 3, an order-of-magnitude estimate of the 
resonance interaction time is 4t ,. w-;J.I(z.p) 112• Finally, if lv11 < vO' the 
resonance condition is not satisfied for any coordinate z, and the resonance in
teraction is due to the eft effect discussed above. Figure 6.1 illustrates the three 
cases we have analyzed. If we take into account the Doppler effect, we should 
plot nw .(z) - k 1(z)/ I v 11 on the axis of ordinates. 
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The eft effect determines the broadening of the ecr line in the frequency range 
w < wea at low T •• when the number of electrons with lv11 > v0 is low (see Fig. 
6.2, curve a), while the Doppler effect determines broadening at high T., when 
the number of such electrons is high. In both limiting cases simple analytical ex
pressions can be derived for the absorption coefficient. When the condition 

v T = (T.Im.)112 ~ cl'2f(wL)112(tUl)3'2!(.10 + q)3t4 

where .10 = (we0 - w)lwe0 and q = (wp/we0) 2, is satisfied, the integral (6.4) is deter
mined by the region 1 in Fig. 6.2 and can be calculated exactly by using the 
saddle-point method: 

"" -- ex - 12113 - .0.0 ,... wL 1 [ ( wL) 2t3 J 
TJ 2·J112 q C (.0.0 + q)1'2 P Cr 

(6.5) 

Equation (6.5) implies that the cyclotron absorption line is broadened in the 
frequency range wlweo exponentially and the characteristic broadening value is 
proportional to n/3. 

If we have 

vT ~ c3t2f(wL)ll2(.10)312j(.10 + q)3t4 

c5'3/(wL)2'3(.10)3'2/(.10 + q)Zt3 

a considerable number of eiectrons have the velocity I v 11 > v 0 and the scale of 
variation of / 0(v1) is significantly greater than the period of oscillations of 
1.1E(v1) 12 (see Fig. 6.2, curve b). Under such conditions we can calculate the ab
sorption coefficient by averaging I.1E 12 over the rapid oscillations using the ex
pression 1.1e-!2"" 11'e2v~ 1£_1 2(~/dtl) l-18(1v11 - vJ, where 8(x) is a step function 
defined as 

[ 1 for x>O 
8(x) = 

0 for x<O 

and ~/dt2 is calculated for the point t = t(z,(v1)). Then we obtain 

17 = ; q w: ( 2::::;) 1'
2 exp[ _ ( v:) 2 ~~~~J (6.6) 

Note that the absorption coefficient (6.6) is proportional to the number of elec
trons for which the cyclotron resonance condition is satisfied at the magnetic 
field minimum: 17 - f 0(vJ oc exp [ - (vifv~~. where v0 = .10/ko"', and 
k 0 = (w/c)(l + q/ .10)1' 2. 

The detaining .10 enters into eqs. (6.5) and (6.6). Therefore, at small .10 
values the absorption coefficient ., can prove to be given by eq. (6.6) and for 
large .10 values, by eq. (6.5). 

The adiabatic traps do not confine electrons with sufficiently high longitudinal 
velocity, so that the tail of the distribution is cut off at I v11 = v 1 = (2e.pifmJ1 12, 

where .p0 is the ambipolar potential. The lack of electrons with I vn I > v 1 
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manifests itself at high electron temperatures if v 1 < v 0 and at low electron 
temperatures if v1 < (2/3) 113(wL) 113v¥3(a0) 112• In both cases the following ap
proximate expression must be used for the absorption coefficient: 

3 1r112 vf 1 [ ( v1 ) a 4 wL J 
7J ""' -4-Q CVT (.60)312 (.60 + q)'t2 exp - VT - J v;- (.60)312 

6.2. Resonance Absorption of 
Oscillations with w == nw.0(n ~ 2) 

(6.7) 

The intensity of the interaction between electrons and the oscillations discussed 
in Sec. 6.1 (w,., w., 8 = kB0 = 0) is very high. For the higher harmonics of the 
electron cyclotron frequency the intensity of the resonance interaction is sharply 
reduced. In particular, this is manifested by the fact that even cold electrons ab
sorb the oscillations with n = l, 8 = 0 if the resonance conditions w = nw. is 
satisfied, while absorption for the higher harmonics of the cyclotron frequency is 
due to the effects related to the finite Larmor radius of electrons 
('q s (k.Lee)2<•-t>, where k.L is the component of k normal to B0; see, for in
stance, [6.6)). Therefore, the oscillations of the first type are more convenient 
for diagnostics of cold low-density plasma. But the absorption coefficient in
creases with the density and reaches the maximum 7J = l for w;,£ I we~ l (even if 
T. = 0). The absorption coefficient differs from unity only for very large detun
ing an when the resonance interaction is due to the far tail of the energy 
distribution of electrons. Thus, we see that higher harmonics of the electron 
cyclotron frequency should be used for diagnostics of high-density plasma. 

The wave vector of the oscillations with w ,., nw. (n ~ 2) practically does not 
vary within the resonance region (£- exp(- iwt + ik · r)). This fact facilitates the 
calculation of the energy absorbed by electrons. 

As it was done in Sec. 6.1, we shall assume that the absorption coefficient is 
small. It can be given by the following self-evident expression (compare with eq. 
(6.5)): .. .. 

., = ~ J dz J dee exp (- ::) Re(E}) (6.8) 

0 

We employ here the same coordinate system as in Sec. 6.1; the axis Ox lies in 
the plane of the vectors k and B0 and e = (x2 + y 2) 1' 2• The finite transverse 
dimensions of the probe beam are taken into account. For 8 =t= 0 this leads to the 
dependence of the oscillation amplitude on the coordinates e and z. The 
dependence on the coordinate e is included in a model form 
([E[cxexp(-(e/a)2), where E is the maximum amplitude in eq. (6.8)). The 
dependence on the coordinate z becomes insignificant if the beam size along the 
axis Oz is considerably greater than the size of the resonance zone 
(tan8V'3e~ 13 ~a). We shall assume that this condition is satisfied. The total flux 
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ofenergyinthebeamisP = a2c2kGIE) 218w, whereG = (1 + a~cos8- ap;;in8 
and ax,z = Ex./Ey(see [6.6]). 

In the min-B traps, which are principally employed in thermonuclear research, 
the magnetic field increases in all directions from the centre. We shall assume 
that in the vicinity of the minimum B0(r) the field B0(r) = B0(1 + 
+ (z/L)2 + (e/L1)2). The electric current j due to the probe wave can be 
calculated by the well-known method of integration along trajectories, taking in
to account not more than one passage through the magnetic field minimum. This 
approach is valid if the phase of the cyclotron rotation is randomized during one 
oscillation of the electron between the magnetic mirrors of the trap (see Sec. 
6.1). The velocity distribution of electrons is assumed to have the Maxwellian 
form. 

Equation (6.8) takes into account not only the Doppler and eft effects (see 
Sec. 6.1) but also the relativistic dependence of the cyclotron frequency on the 
electron energy (w.(v) = w.(l - v2/2c2)), as well as the effect of the finite dimen
sions (fde) of the probe beam and collisions•. We have included the contribution 
of only one nth resonance. If the width of the cyclotron absorption line exceeds 
the distance between the neighbouring resonances, we must sum over n in eq. 
(6.8). It should be remembered that we derived eq. (6.8) assuming that the ab
sorption coefficient is small, TJ -c 1. Owing to the relative "weakness" of the 
resonance interaction for the higher harmonics of the cyclotron frequency the 
condition TJ -c 1 is satisfied not only for w < nw00 but also for w 2: nw00• 

Therefore, in contrast to the equations of Sec. 6.1, eq. (6.8) allows us to treat 
the entire cyclotron absorption line and not just its tail. 

Broadening of the cyclotron absorption line in the frequency range w < nw00 

(~0. = (nw00 - w)/nw00 > 0) is determined by one of the above effects. The 
characteristic broadening values are as follows: Doppler effect
on~- xr. = kJJ/n;eft-o~n- >-.- 1 = (12L2n2!p:>- 113; relativistic effect
on~ - {J2 = (v:r/c)2; and collisions-on~- vl(nw.J. The frrst expression follows 
from the results of Sec. 6.1 and other expressions are self-evident. 

Let us analyze how these effects influence the shape of the cyclotron absorp
tion line in the frequency range w s nw00• 

First, assume that the Doppler effect plays the decisive part (the characteristic 
broadening due to the Doppler effect is greater than all other types of broaden
inB). Then we have 

TJ• (.12.0.) "" 2:,2 'Y· (60.)(A- tan 8.12.0.)2 exp[ - ( ~~·) 2} (6.9) 

where A = (ax - 1)/ ar.> 'Y,(O = 11'w~ail2cNGw~ 112ln _ 1(#'), #' = (k J.PJ212, 
I is the Bessel function of the imaginary argument, and N is the index of refraction. 
" 

• In the case of longitudinal propagation of electromagnetic waves these effects are neg
ligibly small in comparison with the Doppler effect. 
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0 

Fig. 6.3. The absorption coefficient as a function 
of .:10ft. 

As it should be expected, the Doppler effect results in the Gaussian broaden
ing of the absorption line. 

Equation (6.8) makes it possible to determine the position of the maximum of 
the absorption coefficient, so that we can measure the magnetic field at the cen
tre of the trap (see below). Calculations give the following maximum of the ab
sorption coefficient: 

'ln. max'"" 1.2'Yft(x.)A2 

This value is reached when 

Figure 6.3 presents the absorption coefficient as a function of .:10ft. 
Note that other effects discussed above (eft, relativistic, collisional) do not 

change the general character of the function 'lft(.o:10ft). 
Now let us discuss the influence of the eft effect and simultaneously take into 

account finiteness of the transverse dimension of the probe beam. Assuming that 
x.>. <C I (so that I= A(al L 1)2 ~ I), we obtain from eq. (6.8) 

1 A 2 
'lft(.o:10ft) • -'Yft(.o:10ft)-exp{ -..:10ftA} 

61'2 1 +I 
(6.10) 

Equations (6.5) and (6.10) indicate that if broadening is due to the eft effect, the 
main exponential factor in the expression for 'lft(.o:10ft) remains the same irrespec
tive of the number of the harinonic and the direction of propagation of the 
vibrations. 
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The absorption coefficient has the maximum for 

.10.""' - 0.85(a/L1) 2 

which is 

1/o, max • 0.54y.(//A)A2 

(6.11) 

Equation (6.11) shows that the maximum of the absorption line is shifted 
towards higher frequencies with increasing transverse dimension of the beam. 
This is quite natural since the minimum cyclotron frequency along the beam tra
jectory averaged over the beam cross section increases with increasing a. 

If the frequency of collisions is low, as is typical for the thermonuclear 
plasma, they determine only the far tail of the ecr line, which is described by 

1/.(.10.) =-r{[(n~.J2 + (.10.)1 "'} A2 x cos ( f arc tan ( n:·0.10) +~) (6.12) 

For .10. > 11/nw.0 eq. (6.12) yields the Lorentz line broadening which is typical for 
collisional broadening. 

The relativistic effects have a decisive influence when 0 -1rl2. If the conditions 
x, ~ {32, b = A{32/2 > 1, and .10. > {32(1 + n/2) are satisfied, the absorption coeffi
cient is 

1/.(.10.) = _1_ -y.((32) Az( 2.10./(32 + 11\••1 
21'2 n + 3/2 J 

x (2.10/{3! + /1 - (n + 3/2))112 exp(- 2.10/{32) (6.13) 

where /1 = 1/b = 2a2/ Lif32• 

As we can see from eq. (6.8), the maximum of tne absorption coefficient is ob
tained for 

and is equal to 

The relative width of the absorption line in the vicinity of the maximum is 

.10. = {32(n + 3/2)112 

In contrast to the effect of the finite beam dimension [see eq. (6.11)], the 
relativistic effects shift the position of the maximum 11n, max towards lower frequen
cies owing to relativistic decrease in the cyclotron frequency. 

Note that we have analyzed eq. (6.8) assuming that lA I > x .L" This condition is 
satisfied for the extraordinary wave but can be violated for the ordinary wave if 
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0- 1rl2. Then the order of smallness of the absorption coefficient in the parameter 
p. = (k 1 (1.)2 /2 increases. 

To summari1.e, note that, generally, the ecr line profile is shaped by all the above 
effects: the line centre is determined by the Doppler effect (Gaussian profile), the 
slope is determined by the eft and relativistic effects (exponential profile) and the 
tail is determined by the collisional effects (Lorentz profile). 

The line maximum can be shifted with respect to nw.0 by liw which is of the order 
of the characteristic broadening scale. Note that the effect of the finiteness of the 
beam dimension does not change the ecr line shape but can result in a shift of its 
centre [see eq. (6.11)]. 

We have also analyzed eq. (6.8) for large negative v~es of ~0. when the approx
imation of the linearly varying magnetic field (IV B0/ B0 1·• = L2 for r = r,) is ap
plicable (see Fig. 6.1). A convenient approach is to rotate the coordinate system 
used above about the axis Oz so that the vector V B0 lies in the plane xOz. In this 
case, as noted in Sec. 1 (see also [6.4]), the absorption coefficient value does not de
pend on which of the kinetic effects (Doppler, relativistic, etc.) determines the 
resonance cyclotron interaction with individual electrons, and we have 

(6.14) 

Here G1 =B(Nl - 1 - q)/N2.L M. whe!l'- B =(Nl;_ + N2 ~ 2q - 3) sin (J cos <P 
sin 1/; + (N2.L- q + 2) cos 0 cos 1/;, 1/; = B0VB0, and <P = k .L(VB0) .L (see [6.7]). 

Note that for longitudinal propagation of the wave and n = 1 (see [6.3]) the ab
sorption coefficient coincides with that found from eq. (6.14). 

6.3. Diagnostic Techniques 
Based on the ECR 

6.3.1 Determination of the ecr line 
profile in the vicinity of the extremums 
of the cyclotron frequency 

The profile of the ecr line is given by the expressions derived in Sees. 6.1 and 6.2. 
We can find the absolute T. from the relative measurements of the line profile by 
analyzing the frequency dependence of the exponential functions in these expres
sions. This fact significantly facilitates measurement since it eliminates the need for 
indirect absolute calibration (for instance, by the Thomson light scattering of the 
blackbody radiation). Moreover, the line profile measurements themselves can be 
used for calibration of the absolute measurements of the electron cyclotron radia
tion. The ecr line profile can be obtained both by a passive method from the elec
tron cyclotron radiation data and by the active method from the measurements of 
attenuation of the probe beam in plasma. The choice of the harmonic number and 
the angles of observation (probing) depends on the specific experimental condi
tions. 
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Note that if the energy distribution of electrons is anisotropic (T._j_ * T.1), then 
these diagnostic techniques allow us to find the magnitude of anisotropy. Indeed, 
the temperature found from the ecr line profile corresponds to the Maxwellian 
longitudinal energy distribution and the temperature found from the absolute 
measurements of the electron cyclotron radiation corresponds to the transverse 
energy distribution. 

The longitudinal energy distribution of electrons can also be determined from the 
ecr line profile. Such measurements yield the plasma potential in open traps. In
deed, the electrons with the energies exceeding the plasma potential do not make a 
contribution to the distribution function and this fact must affect the line profile 
[see eq. (6.7)]. 

We have assumed in the above discussion that the frequency of the oscillations 
used for diagnostics is close to nweO" However, the same information can be obtained 
from the measurements of the absorption coefficient for the waves whose frequency 
is close to the maximum cyclotron frequency. It should be remembered that the 
magnetic field in open traps has local maximums in the regions of the magnetic mir
rors. 

In conclusion, note that practically for any installation with a nonuniform 
magnetic field we can identify a direction of probing in which there is an extremum 
of the magnetic field. This is true, in particular, for tokamaks. 

6.3.2 Measurements of the position 
of the absorption coefficient maximum 

As shown by the above calculations, the absorption maximum occurs at the fre
quencies w "" nweO (see Sec. 6.2). When we find its position, we can find the 
magnetic field at the centre of the plasma to a high accuracy. Such measurements 
are needed in the experiments with high-pressure plasmas, when ~he magnetic field 
in the plasma differs considerably from the field in vacuum. The results can yield 
information on the diamagnetic properties of the plasma. 

6.3.3 Measurements of the absorption 
coefficient at the frequencies w > "'eO 

By measuring the absorption of the probe beam with w > "'eO we can make local 
measurements of the temperature and density of electrons. The best way to find the 
plasma density is to use the first harmonic and longitudinal probing since under 
such conditions the absorption coefficient is independent of the temperature (see 
[6.3]). In high-density plasmas total absorption on the first harmonic occurs, and 
the higher ecr harmonics should be used for diagnostics. The absorption coefficient 
for such oscillations is proportional to n01" [see eq. (6.13)], where the exponent 
depends on the harmonic number of and the type of the waves employed in 
diagnostics. Various modifications of this diagnostic method involve simultaneous 
use of the ordinary and extraordinary waves, several harmonics or several directions 
of probing. 
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6.3. 4.Experimenta/ applications 

The physical concepts of the above diagnostic methods have been experimentally 
verified in weakly ionized low-density gas-discharge plasma with n0 < 1011 cm-3• 

The equations for the absorption coefficient derived in [6.3] for the resonance in a 
linearly varying magnetic field (w = w., 0 = 0) have been verified in [6.8]. The 
authors of [6.2] have measured the plasma temperature in various gas discharges 
with magnetic field geometry similar to the fields in the open traps. The temperature 
has been determined from the ecr line profile and compared with the data obtained 
by other methods. 

The ecr diagnostics was most widely used in the experiments with the min-B open 
trap Ogra-3B [6.9, 6.10]. The installation had the following parameters: a super
conducting magnetic coil of the "baseball" type produced the minimum field 2 T 
with the mirror ratio 2.06 and the distance between the mirrors of 69 em; the injec
tor of neutral hydrogen atoms with the energy 20 keV, the current 0.5 A and the in
jection time 1-3s produced plasma with the density of up to 2 x 1010cm - 3 and the 
electron temperature of up to 300 eV. Owing to low plasma density probing along 
the trap axis with the first harmonic of the cyclotron frequency was used. Figure 6.4 
illustrates the process of accumulation of the electron density during injection as 
measured by ecr absorption. Figure 6.5 shows the distribution of electrons over the 
longitudinal energies found from the ecr line profile which was determined by the 
Doppler effect. The experiment revealed an anomalous ambipolar potential 
(IP ""' lOTJ, so that the energy distribution of electrons had the Maxwellian form up 

I. 

Fig. 6.4. The process of plasma accumulation in 
Ogra-3B: n0 is the electron density measured by the ecr technique; Ie is the flux 
of the cold charge-exchange ions from the trap, and /b is the injection beam cur
rent. 
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~r-----r---~~----t------1 
.s 

Fig. 6.5. Distribution of electrons over the longi
tudinal energy e. 

to the energies which were considerably higher than the sensitivity limits of the in
struments used in the experiments. 

The applicability of the ecr diagnostic method can be illustrated by the brief list of 
results obtained in the Ogra-3B experiments: 

1) continuous measurements of the plasma density profile along the trap axis 
made it possible to determine the ion velocity distribution over angles, to find the 
longitudinal plasma size and its variation, to analyze the dynamics of accumulation 
and decay of plasma, and to measure the lifetime, the vacuum conditions in the in
stallation, and the local spectra of oscillations of the plasma density; 

2) continuous measurements of T, gave information on the dynamics of heating 
and cooling of electrons, on the mutual effect of the cyclotron instabilities on the 
electron temperature_, and on the energy distribution of electrons; 

3) the position of the absorption maximum corresponded to the minimum of the 
magnetic field. 
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